悟空视频

    在线播放云盘网盘BT下载影视图书

    PyTorch深度学习入门与技术实践 - 图书

    2025计算机·编程设计
    导演:罗刚
    "《PyTorch深度学习入门与技术实践》介绍如何学习和使用流行的PyTorch框架开发深度学习应用,主要内容包括PyTorch中的计算图,用三阶多项式拟合函数,实现手写数字识别,神经网络基础,卷积神经网络,PyTorch基础知识,transformer架构,文本分类应用开发,聊天机器人应用开发,用Wav2Vec2进行语音识别,机器翻译应用开发,分布式PyTorch等。 《PyTorch深度学习入门与技术实践》适合作为高等院校计算机、软件工程专业本科生、研究生的参考书目,同时也适用于对PyTorch深度学习领域感兴趣的人士。 "
    PyTorch深度学习入门与技术实践
    图书

    PyTorch深度学习入门与技术实践 - 图书

    2025计算机·编程设计
    导演:罗刚
    "《PyTorch深度学习入门与技术实践》介绍如何学习和使用流行的PyTorch框架开发深度学习应用,主要内容包括PyTorch中的计算图,用三阶多项式拟合函数,实现手写数字识别,神经网络基础,卷积神经网络,PyTorch基础知识,transformer架构,文本分类应用开发,聊天机器人应用开发,用Wav2Vec2进行语音识别,机器翻译应用开发,分布式PyTorch等。 《PyTorch深度学习入门与技术实践》适合作为高等院校计算机、软件工程专业本科生、研究生的参考书目,同时也适用于对PyTorch深度学习领域感兴趣的人士。 "
    PyTorch深度学习入门与技术实践
    图书

    PyTorch深度学习入门 - 图书

    2019
    导演:曾芃壹
    本书用浅显易懂的语言,图文并貌地讲解了深度学习的基础知识,从如何挑选硬件到神经网络的初步搭建,再到实现图片识别、文本翻译、强化学习、生成对抗网络等多个目前最流行的深度学习应用。书中基于目前流行的PyTorch框架,运用Python语言实现了各种深度学习的应用程序,让理论和实践紧密结合。
    PyTorch深度学习入门
    搜索《PyTorch深度学习入门》
    图书

    深度学习入门之PyTorch - 图书

    导演:廖星宇
    《深度学习入门之PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。《深度学习入门之PyTorch》将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。
    深度学习入门之PyTorch
    搜索《深度学习入门之PyTorch》
    图书

    深度学习入门与实践 - 图书

    2023计算机·人工智能
    导演:王舒禹 吕鑫
    大约在一百年前,电气化改变了交通运输行业、制造业、医疗行业、通信行业,如今AI带来了同样巨大的改变。AI的各个分支中发展最为迅速的方向之一就是深度学习。 本书主要涉及以下内容:第1部分是神经网络的基础,学习如何建立神经网络,以及如何在数据上面训练它们。第2部分进行深度学习方面的实践,学习如何构建神经网络与超参数调试、正则化以及一些高级优化算法。第3部分学习卷积神经网络(CNN),以及如何搭建模型、有哪些经典模型。它经常被用于图像领域,此外目标检测、风格迁移等应用也将涉及。最后在第4部分学习序列模型,以及如何将它们应用于自然语言处理等任务。序列模型讲到的算法有循环神经网络(RNN)、长短期记忆网络(LSTM)、注意力机制。 通过以上内容的学习,读者可以入门深度学习领域并打下扎实基础,为后续了解和探索人工智能前沿科技做知识储备。 本书配有电子课件,需要配套资源的教师可登录机械工业出版社教育服务网www.cmpedu.com免费注册后下载。
    深度学习入门与实践
    搜索《深度学习入门与实践》
    图书

    深度学习及加速技术:入门与实践 - 图书

    2023计算机·人工智能
    导演:白创
    本书紧密围绕深度学习及加速技术的基础理论与应用案例展开叙述,实现了深度学习算法设计与硬件加速技术的有机统一,是一本基础理论与实践案例相结合的实用图书。其具体内容涉及人工智能基本概念,神经网络数学基础、神经网络基本结构与学习策略、反向传播算法数学原理与训练机制等神经网络基础理论,以及一些高级主题和实践。本书可作为从事人工智能领域算法研究、架构设计与应用实现等工作的科研人员、工程师以及高等院校师生的参考书籍。
    深度学习及加速技术:入门与实践
    搜索《深度学习及加速技术:入门与实践》
    图书

    PyTorch深度学习实战 - 图书

    2022计算机·数据库
    导演:伊莱·史蒂文斯 卢卡·安蒂加 托马斯·菲曼
    虽然很多深度学习工具都使用Python,但PyTorch库是真正具备Python风格的。对于任何了解NumPy和scikit-learn等工具的人来说,上手PyTorch轻而易举。PyTorch在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。本书是教你使用PyTorch创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及将结果进行可视化展示。本书主要内容:(1)训练深层神经网络;(2)实现模块和损失函数;(3)使用PyTorchHub预先训练的模型;(4)探索在JupyterNotebooks中编写示例代码。
    PyTorch深度学习实战
    搜索《PyTorch深度学习实战》
    图书

    深度学习原理与PyTorch实战 - 图书

    2022计算机·编程设计
    导演:集智俱乐部
    本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。 第2版基于PyTorch 1.6.0,对全书代码进行了更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。
    深度学习原理与PyTorch实战
    搜索《深度学习原理与PyTorch实战》
    图书

    深度学习原理与PyTorch实战 - 图书

    2022计算机·编程设计
    导演:集智俱乐部
    本书是一本系统介绍深度学习技术及开源框架PyTorch的入门书。书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。读者通过阅读本书,可以学会构造一个图像识别器,生成逼真的图画,让机器理解单词与文本,让机器作曲,教会机器玩游戏,还可以实现一个简单的机器翻译系统。 第2版基于PyTorch 1.6.0,对全书代码进行了更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。
    深度学习原理与PyTorch实战
    搜索《深度学习原理与PyTorch实战》
    图书

    Python深度学习:基于PyTorch - 图书

    2022计算机·编程设计
    导演:吴茂贵 郁明敏 杨本法 李涛 张粤磊
    内容介绍 这是一本基于*新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第壹部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
    Python深度学习:基于PyTorch
    搜索《Python深度学习:基于PyTorch》
    图书
    加载中...