悟空视频

    在线播放云盘网盘BT下载影视图书

    Python深度学习 - 图书

    2022计算机·编程设计
    导演:弗朗索瓦·肖莱 著
    本书由流行深度学习框架Keras之父弗朗索瓦·肖莱执笔,通过直观的解释和丰富的示例帮助你构建深度学习知识体系。作者避免使用数学符号,转而采用Python代码来解释深度学习的核心思想。全书共计14章,既涵盖了深度学习的基本原理,又体现了这一迅猛发展的领域在近几年里取得的重要进展,包括Transformer架构的原理和示例。读完本书后,你将能够使用Keras解决从计算机视觉到自然语言处理等现实世界的诸多问题,包括图像分类、图像分割、时间序列预测、文本分类、机器翻译、文本生成等。
    Python深度学习
    图书

    Python深度学习 - 图书

    2018计算机·编程设计
    导演:弗朗索瓦·肖莱
    本书由Keras之父、现任Google人工智能研究员的弗朗索瓦·肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。
    Python深度学习
    图书

    Python深度学习 - 图书

    2018计算机·编程设计
    导演:弗朗索瓦·肖莱
    本书由Keras之父、现任Google人工智能研究员的弗朗索瓦·肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。
    Python深度学习
    图书

    Python深度学习:基于PyTorch - 图书

    2022计算机·编程设计
    导演:吴茂贵 郁明敏 杨本法 李涛 张粤磊
    内容介绍 这是一本基于*新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第壹部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
    Python深度学习:基于PyTorch
    搜索《Python深度学习:基于PyTorch》
    图书

    Python深度学习:基于TensorFlow - 图书

    2018计算机·编程设计
    导演:吴茂贵
    在机器学习、深度学习中有很多抽象的概念、复杂的算法、深奥的理论,如Numpy的广播机制、神经网络中的共享参数、动量优化法、梯度消失或爆炸等,这些内容如果只用文字来描述,可能很难达到茅塞顿开的效果,但如果用一些图形来展现,再加上适当的文字说明,往往能取得非常好的效果,正所谓一张好图胜过千言万语。
    Python深度学习:基于TensorFlow
    搜索《Python深度学习:基于TensorFlow》
    图书

    Python深度学习:基于PyTorch - 图书

    2022计算机·编程设计
    导演:吴茂贵 郁明敏 杨本法 李涛 张粤磊
    内容介绍 这是一本基于*新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第壹部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
    Python深度学习:基于PyTorch
    搜索《Python深度学习:基于PyTorch》
    图书

    Python深度学习 (第2版) - 图书

    导演:[美] 弗朗索瓦·肖莱
    近年来,深度学习在自然语言处理、计算机视觉等领域取得了非凡的进展。从机器翻译和文本生成到自动驾驶和虚拟助手,我们受益于深度学习技术的逐渐普及。然而,深度学习还远未发挥全部潜力。欢迎来到深度学习的世界!在这个规模呈爆发式增长的领域,仍有许多“宝藏”等待你去发掘。 本书由流行深度学习框架 Keras 之父弗朗索瓦·肖莱执笔,不用数学公式,而用Python代码帮助你直观理解深度学习的核心思想。本书在第1版的基础上进行了大幅更新和增补,以体现深度学习领域的快速发展。
    Python深度学习 (第2版)
    搜索《Python深度学习 (第2版)》
    图书

    Python深度学习原理、算法与案例 - 图书

    2023计算机·计算机综合
    导演:邓立国 李剑锋 林庆发 邓淇文
    本书涵盖深度学习的专业基础理论知识,包括深度学习概述、机器学习基础、神经网络基础、卷积神经网络、循环神经网络、正则化与深度学习优化,以及比较流行的应用场景实践。本书配套70个示例源码及PPT课件。 本书共11章外加3个附录,系统讲解深度学习的基础知识与领域应用实践。本书内容包括深度学习概述、机器学习基础、神经网络基础、卷积神经网络和循环神经网络、正则化与深度学习优化、计算机视觉应用、目标检测应用、文本分析应用、深度强化学习应用、TensorFlow模型应用、Transformer模型应用等。附录中还给出机器学习和深度学习中用到的数学基础知识,包括线性代数、概率论和信息论等。 本书适合Python深度学习初学者、深度学习算法开发人员学习,也适合作为高等院校计算机技术、人工智能、大数据相关专业的教材或教学参考书。
    Python深度学习原理、算法与案例
    搜索《Python深度学习原理、算法与案例》
    图书

    Python深度学习从零开始学 - 图书

    2022计算机·编程设计
    导演:宋立桓
    本书立足实践,以通俗易懂的方式详细介绍深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。本书的读者只需具备Python语言基础知识,不需要有数学基础或者AI基础,按照本书的内容循序渐进地学习,即可快速上手深度学习。本书配套示例源码、PPT课件、数据集、开发环境与答疑服务。本书共分13章,主要内容包括人工智能、机器学习和深度学习之间的关系、深度学习的环境搭建、深度学习的原理、深度学习框架TensorFlow和Keras、卷积神经网络相关知识、图像识别、情感分析、迁移学习、人脸识别、图像风格迁移、生成对抗网络等内容。本书从最简单的常识出发来切入AI领域,打造平滑和兴奋的学习体验。
    Python深度学习从零开始学
    搜索《Python深度学习从零开始学》
    图书

    Python深度学习:模型、方法与实现 - 图书

    2021计算机·编程设计
    导演:伊凡·瓦西列夫
    本书集合了基于应用领域的高级深度学习的模型、方法和实现。本书分为四部分。第1部分介绍了深度学习的构建和神经网络背后的数学知识。第二部分讨论深度学习在计算机视觉领域的应用。第三部分阐述了自然语言和序列处理。讲解了使用神经网络提取复杂的单词向量表示。讨论了各种类型的循环网络,如长短期记忆网络和门控循环单元网络。第四部分介绍一些虽然还没有被广泛采用但有前途的深度学习技术,包括如何在自动驾驶上应用深度学习。学完本书,读者将掌握与深度学习相关的关键概念,学会如何使用TensorFlow和PyTorch实现相应的AI解决方案。
    Python深度学习:模型、方法与实现
    搜索《Python深度学习:模型、方法与实现》
    图书
    加载中...