悟空视频

    在线播放云盘网盘BT下载影视图书

    Python金融数据挖掘与分析实战 - 图书

    2021计算机·数据库
    导演:刘鹏 高中强等
    这是一本金融数据挖掘与分析领域的实战性著作,它能指导零Python编程基础和零数据挖掘与分析基础的读者快速掌握金融数据挖掘与分析的工具、技术和方法。读完本书,你将会有如下3个方面的收获。(1)Python编程基础和数据预处理:首先详细讲解了Python的核心语法,以及NumPy、Matplotlib、PySpark、JupyterNotebook等Python数据处理工具的使用;然后详细介绍了数据预处理的流程和技巧。通过深入浅出的语言和丰富的样例展示,帮助初学者快速上手Python,为之后的数据分析实战夯实基础。(2)数据挖掘与分析的经典方法:详细讲解了经典的数据挖掘方法,包括聚类分析、回归分析、分类分析、异常检测、关联分析、时间序列分析等。(3)主要金融应用场景的数据挖掘方法:针对网络舆情的采集和热点分析、舆情分析中的情感分析、股价趋势预测、个人信用评分、企业信用评分、用户画像、目标客户精准分析、销售数据分析等金融行业的常见应用场景,给出了数据挖掘和分析的方法。本书注重实战,配有大量精心设计的案例,同时还有配套的讲解视频、代码和数据资源,可操作性强。
    Python金融数据挖掘与分析实战
    图书

    Python金融数据挖掘与分析实战 - 图书

    2021计算机·数据库
    导演:刘鹏 高中强等
    这是一本金融数据挖掘与分析领域的实战性著作,它能指导零Python编程基础和零数据挖掘与分析基础的读者快速掌握金融数据挖掘与分析的工具、技术和方法。读完本书,你将会有如下3个方面的收获。(1)Python编程基础和数据预处理:首先详细讲解了Python的核心语法,以及NumPy、Matplotlib、PySpark、JupyterNotebook等Python数据处理工具的使用;然后详细介绍了数据预处理的流程和技巧。通过深入浅出的语言和丰富的样例展示,帮助初学者快速上手Python,为之后的数据分析实战夯实基础。(2)数据挖掘与分析的经典方法:详细讲解了经典的数据挖掘方法,包括聚类分析、回归分析、分类分析、异常检测、关联分析、时间序列分析等。(3)主要金融应用场景的数据挖掘方法:针对网络舆情的采集和热点分析、舆情分析中的情感分析、股价趋势预测、个人信用评分、企业信用评分、用户画像、目标客户精准分析、销售数据分析等金融行业的常见应用场景,给出了数据挖掘和分析的方法。本书注重实战,配有大量精心设计的案例,同时还有配套的讲解视频、代码和数据资源,可操作性强。
    Python金融数据挖掘与分析实战
    图书

    Python广告数据挖掘与分析实战 - 图书

    2021计算机·数据库
    导演:杨游云 周健
    本书共十二章,第1-4章重在介绍移动广告营销数据分析理论与案例分析,包括广告数据分析的基本概念、内容和意义,广告数据分析相关理论知识及常用分析方法,移动广告营销常见的数据分析案例剖析以及如何做一份让领导满意的数据分析报告;本书第5-6章主要介绍Python软件安装及常用包的主要用法。本书第7-10章主要介绍利用Python实现移动广告营销中常见的机器学习算法,重点掌握常用的模型评价方法,模型原理、实现方法和技巧,其中包括混淆矩阵、AUC、ROC等常用模型评价方法以及线性回归、逻辑回归、决策树、KNN、SVM、神经网络、随机森林、GBDT、XGBoost、Stacking等常用监督学习算法。第11章主要介绍k-means聚类、Lookalike相似用户挖掘等常用无监督学习算法及实现方法。第12章主要介绍移动广告营销常用的特征选择及特征工程方法。读者如果只想了解数据分析相关概念和方法,可以选择性阅读本书前四章内容,后八章偏向数据挖掘算法和编程实践等内容,有兴趣可以深入阅读全书。
    Python广告数据挖掘与分析实战
    搜索《Python广告数据挖掘与分析实战》
    图书

    Python广告数据挖掘与分析实战 - 图书

    2021计算机·数据库
    导演:杨游云 周健
    本书共十二章,第1-4章重在介绍移动广告营销数据分析理论与案例分析,包括广告数据分析的基本概念、内容和意义,广告数据分析相关理论知识及常用分析方法,移动广告营销常见的数据分析案例剖析以及如何做一份让领导满意的数据分析报告;本书第5-6章主要介绍Python软件安装及常用包的主要用法。本书第7-10章主要介绍利用Python实现移动广告营销中常见的机器学习算法,重点掌握常用的模型评价方法,模型原理、实现方法和技巧,其中包括混淆矩阵、AUC、ROC等常用模型评价方法以及线性回归、逻辑回归、决策树、KNN、SVM、神经网络、随机森林、GBDT、XGBoost、Stacking等常用监督学习算法。第11章主要介绍k-means聚类、Lookalike相似用户挖掘等常用无监督学习算法及实现方法。第12章主要介绍移动广告营销常用的特征选择及特征工程方法。读者如果只想了解数据分析相关概念和方法,可以选择性阅读本书前四章内容,后八章偏向数据挖掘算法和编程实践等内容,有兴趣可以深入阅读全书。
    Python广告数据挖掘与分析实战
    搜索《Python广告数据挖掘与分析实战》
    图书

    金融数据挖掘与分析 - 图书

    2015
    导演:郑志明
    本套丛书由国家银行业信息科技管理高层指导委员会组织编写,银监会尚福林主席担任丛书编委会主编并亲笔作序。编委会成员囊括了银监会、国内各大银行的领导,各书的编著者都是各大银行总行的信息技术技术专家。本套丛书系统性强,内容先进实用,既立足我国银行业实际,又注重总结本土银行业的实践经验和成功案例,既着眼于国际先进银行的信息技术发展态势,又对如何将这些先进技术和理念本土化结合进行了探索和思考。 本书针对金融行业数据量大、更新快的特点,着重介绍了数据挖掘与分析技术在金融行业尤其是银行业中的应用。本书的主要内容包括:数据挖掘概述、金融数据挖掘概述、基于大数据的金融数据挖掘概述、数据仓库技术、数据挖掘与分析技术、大数据挖掘与分析技术、数据挖掘技术在零售银行信用风险管理中的应用、数据挖掘技术在巴塞尔资本协议下的银行风险计量中的应用、数据挖掘技术在客户关系管理中的应用、...(展开全部)
    金融数据挖掘与分析
    搜索《金融数据挖掘与分析》
    图书

    Python与数据挖掘 - 图书

    2016计算机·计算机综合
    导演:张良均 杨海宏 何子健 杨征等
    Python是一种带有动态语义的、解释性的、面向对象的高级编程语言。其高级内置数据结构,结合动态类型和动态绑定,使其对于敏捷软件开发非常具有吸引力。同时,Python作为脚本型(胶水)语言连接现有的组件也十分高效。Python语法简洁,可读性强,从而能降低程序的维护成本。不仅如此,Python支持模块和包,鼓励程序模块化和代码重用。
    Python与数据挖掘
    搜索《Python与数据挖掘》
    图书

    Python数据挖掘实战:微课版 - 图书

    2023计算机·计算机综合
    导演:王磊 邱江涛
    数据挖掘旨在发现蕴含在数据中的有价值的数据模式、知识或规律,是目前非常热门的研究领域。理解数据挖掘模型的原理、方法并熟练掌握其实现技术是数据挖掘从业者必备的能力。本书从理论模型和技术实战两个角度,系统讲述数据挖掘的基本流程、模型方法、实现技术及案例应用,帮助读者系统地掌握数据挖掘的核心技术,培养读者从事数据挖掘工作的基本能力。全书共12章,主要内容包括数据探索、数据预处理、特征选择、基础分类模型及回归模型、集成技术、聚类分析、关联规则分析、时间序列挖掘、异常检测、智能推荐等。除第1章、第2章外,本书以一章对应一个主题的形式完整描述相应主题的数据挖掘模型,简洁、清晰地介绍其基本原理和算法步骤,并结合Python语言介绍数据挖掘模型的实现技术,同时结合案例分析数据挖掘模型在数据挖掘中的应用。此外,书中还通过大量的图、表、代码、示例帮助读者快速掌握相关内容。本书适合作为相关专业本科生和研究生的数据挖掘课程的教材,也可以作为数据挖掘技术爱好者或从业者的入门参考书。
    Python数据挖掘实战:微课版
    搜索《Python数据挖掘实战:微课版》
    图书

    金融数据分析和数据挖掘案例实战 - 图书

    2025计算机·数据库
    导演:魏建国 曾珂 翟锟 常国珍
    本书涵盖了金融数据分析的主要内容,从基础的数据理解、预处理,到高级的数据挖掘技术和模型构建,都有详尽的阐述。本书不仅介绍了数据分析的基本流程和方法,如发现问题、近因分析、根因分析、预测和制定解决方案等,还详细介绍了数据挖掘的方法论,如CRISP-DM和SEMMA等。这些技术和方法不仅具有理论价值,更具备实践意义,能够启发读者在实际业务中运用数据分析解决实际问题。 本书通过大量的案例展示如何运用数据解决实际问题,从数据理解、预处理,到模型构建、评估与应用,还涉及算法工程化内容,助力金融从业者及相关专业人士提升数据分析能力,挖掘数据价值,推动金融业务创新与决策优化。
    金融数据分析和数据挖掘案例实战
    搜索《金融数据分析和数据挖掘案例实战》
    图书

    金融数据分析和数据挖掘案例实战 - 图书

    2025计算机·数据库
    导演:魏建国 曾珂 翟锟 常国珍
    本书涵盖了金融数据分析的主要内容,从基础的数据理解、预处理,到高级的数据挖掘技术和模型构建,都有详尽的阐述。本书不仅介绍了数据分析的基本流程和方法,如发现问题、近因分析、根因分析、预测和制定解决方案等,还详细介绍了数据挖掘的方法论,如CRISP-DM和SEMMA等。这些技术和方法不仅具有理论价值,更具备实践意义,能够启发读者在实际业务中运用数据分析解决实际问题。 本书通过大量的案例展示如何运用数据解决实际问题,从数据理解、预处理,到模型构建、评估与应用,还涉及算法工程化内容,助力金融从业者及相关专业人士提升数据分析能力,挖掘数据价值,推动金融业务创新与决策优化。
    金融数据分析和数据挖掘案例实战
    搜索《金融数据分析和数据挖掘案例实战》
    图书

    Python数据挖掘与机器学习实战 - 图书

    2023计算机·数据库
    导演:方巍
    本书作为数据挖掘入门读物,基于真实数据集进行案例实战,使用Python数据科学库,从数据预处理开始一步步介绍数据建模和数据挖掘的过程。主要介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带领读者轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用逻辑回归进行环境数据检测,如何使用HMM进行中文分词,如何利用卷积神经网络识别雷达剖面图,如何使用循环神经网络构建聊天机器人,如何使用朴素贝叶斯算法进行破产预测,如何使用DCGAN网络进行人脸生成等。本书也涉及神经网络、在线学习、强化学习、深度学习、大数据处理等内容。 本书适合对传统数据挖掘和机器学习算法开发感兴趣的读者阅读,也适合需要系统掌握深度学习的开发人员阅读。
    Python数据挖掘与机器学习实战
    搜索《Python数据挖掘与机器学习实战》
    图书
    加载中...