悟空视频

    在线播放云盘网盘BT下载影视图书

    代数基本定理 - 图书

    2009
    导演:Benjamin Fine
    《代数基本定理》对数学中最重要的定理——代数基本定理给出了六种证明,方法涉及到分析、代数与拓扑等数学分支。《代数基本定理》的六个证明:两个分析方法中一个(本质上)是运用实分析中的两维极值定理,一个是运用标准的复分析方法,也就是经典的Liouville定理;两个代数方法中一个是运用多项式环的知识,一个是运用域扩张的Galois定理:两个拓扑方法中一个是运用分枝数的计算,另一个是运用单位球的基本群。此外附录中给出了Gauss的证明,cauchy的证明,三个另外的反分析证明以及两个另外的拓扑证明。 《代数基本定理》以一个问题为主线,纵横数学的几乎所有领域,结构严谨、文笔流畅、浅显易懂、引人入胜,是一本少见的能让读者入迷的好读物,可以使读者与作者在书中很好地进行对话与交流。通过学习《代数基本定理》,读者可以增加知识面,加深对学科交叉与渗透的理解和认识。不足之...(展开全部)
    代数基本定理
    图书

    从代数基本定理到超越数 - 图书

    导演:冯承天
    《从代数基本定理到超越数:一段经典数学的奇幻之旅》分为四个部分,共计十四章,如“从自然数系到有理数系”、“无理数与实数系”、“代数、基本定理的定性说明”、“业余数学家阿尔岗的证明”、“美国数学家安凯屈的证明”、“圆周率及其元理性”、“自然对数的底数e及其元理性”、“有关多项式的一些理论”、“代数扩域、有限扩域与代数元域”等。
    从代数基本定理到超越数
    搜索《从代数基本定理到超越数》
    图书

    从代数基本定理到超越数: 一段经典数学的奇幻之旅 - 图书

    导演:冯承天
    代数基本定理讲些什么?它是如何证明的? 圆周率π是怎样得出的?怎样证明它是一个无理数?怎样证明它是一个超越数? 自然对数的底e是怎样定义的?怎样证明它是一个无理数?怎样证明它是一个超越数? 请追随本书,来一次“经典数学的奇幻之旅”! 代数基本定理、超越数的存在,以及π和e都是超越数,这些曾是数学上的重要课题。高斯等对代数基本定理的证明,康托尔、刘维尔对超越数存在的证明,以及埃尔米特和林德曼如何分别证明了“π和e是超越数”,本书试图将这些知识,系统、简洁且完美地介绍给广大数学爱好者。 《从代数基本定理到超越数:一段经典数学的奇幻之旅》试图帮助读者掌握多项式理论、域论、尺规作图理论,以及用分析法和反证法去解决数学问题的一些常用方法,从而体会数学之美。
    从代数基本定理到超越数: 一段经典数学的奇幻之旅
    搜索《从代数基本定理到超越数: 一段经典数学的奇幻之旅》
    图书

    从代数基本定理到超越数: 一段经典数学的奇幻之旅 - 图书

    导演:冯承天
    《从代数基本定理到超越数:一段经典数学的奇幻之旅》分为四个部分,共计十四章,如“从自然数系到有理数系”、“无理数与实数系”、“代数、基本定理的定性说明”、“业余数学家阿尔岗的证明”、“美国数学家安凯屈的证明”、“圆周率及其元理性”、“自然对数的底数e及其元理性”、“有关多项式的一些理论”、“代数扩域、有限扩域与代数元域”等。
    从代数基本定理到超越数: 一段经典数学的奇幻之旅
    搜索《从代数基本定理到超越数: 一段经典数学的奇幻之旅》
    图书

    从代数基本定理到超越数: 一段经典数学的奇幻之旅 - 图书

    导演:冯承天
    代数基本定理讲些什么?它是如何证明的? 圆周率π是怎样得出的?怎样证明它是一个无理数?怎样证明它是一个超越数? 自然对数的底e是怎样定义的?怎样证明它是一个无理数?怎样证明它是一个超越数? 请追随本书,来一次“经典数学的奇幻之旅”! 代数基本定理、超越数的存在,以及π和e都是超越数,这些曾是数学上的重要课题。高斯等对代数基本定理的证明,康托尔、刘维尔对超越数存在的证明,以及埃尔米特和林德曼如何分别证明了“π和e是超越数”,本书试图将这些知识,系统、简洁且完美地介绍给广大数学爱好者。 《从代数基本定理到超越数:一段经典数学的奇幻之旅》试图帮助读者掌握多项式理论、域论、尺规作图理论,以及用分析法和反证法去解决数学问题的一些常用方法,从而体会数学之美。
    从代数基本定理到超越数: 一段经典数学的奇幻之旅
    搜索《从代数基本定理到超越数: 一段经典数学的奇幻之旅》
    图书

    代数学の基本定理 - 图书

    导演:Benjamin Fine
    代数学の基本定理
    搜索《代数学の基本定理》
    图书

    代数基本概念 - 图书

    导演:I.R.Shafarevich
    《代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。 《代数基本概念》高度原创且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、lie群与lie代数、上同调、范畴论等。它不是按照代数教科书的传统模式写的,而是反映了作者的强烈观点:“用基本例子的一批样本,它会表达得更好。这给数学家提供了动机和实质性的定义,同时给出这个概念的真实意义。” 书中共有精心挑选的164个例子和45幅图,给读者提供了物理背景和直觉,通过它们能够对抽象的概念产生更深的印象。相对而言,书中只有6个引理和104个定理,而且这些定理往往不加证明,只给出证明思路,这将大大刺激读者的思考,激发更大的兴趣。 《代数基本概念》起点并不高,大学数学系二、三年级的学生...(展开全部)
    代数基本概念
    搜索《代数基本概念》
    图书

    代数基本概念 - 图书

    导演:I.R.Shafarevich
    《代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。 《代数基本概念》高度原创且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、lie群与lie代数、上同调、范畴论等。它不是按照代数教科书的传统模式写的,而是反映了作者的强烈观点:“用基本例子的一批样本,它会表达得更好。这给数学家提供了动机和实质性的定义,同时给出这个概念的真实意义。” 书中共有精心挑选的164个例子和45幅图,给读者提供了物理背景和直觉,通过它们能够对抽象的概念产生更深的印象。相对而言,书中只有6个引理和104个定理,而且这些定理往往不加证明,只给出证明思路,这将大大刺激读者的思考,激发更大的兴趣。 《代数基本概念》起点并不高,大学数学系二、三年级的学生...(展开全部)
    代数基本概念
    搜索《代数基本概念》
    图书

    高等代数: 定理·问题·方法 - 图书

    导演:胡适耕
    《高等代数:定理•问题•方法》简介:高等代数与数学分析并称为最重要的数学基础课程,多年来为教育界所公认。学生从高等代数课程中所获得的知识与方法训练,在其后的数学学习与研究中有不可替代的作用。《高等代数:定理•问题•方法》通过800道例题分析,透彻地阐释并系统运用了读者在学习过程中所感觉到的优美的思想与方法,务求读者能真正透彻地弄清一些问题。《高等代数:定理•问题•方法》共分四章,分别为多项式、矩阵与向量、特征值与标准形、内积空间与二次型,每小节以概念与定理、问题与方法的模式进行阐述。
    高等代数: 定理·问题·方法
    搜索《高等代数: 定理·问题·方法》
    图书

    高等代数: 定理·问题·方法 - 图书

    导演:胡适耕
    《高等代数:定理•问题•方法》简介:高等代数与数学分析并称为最重要的数学基础课程,多年来为教育界所公认。学生从高等代数课程中所获得的知识与方法训练,在其后的数学学习与研究中有不可替代的作用。《高等代数:定理•问题•方法》通过800道例题分析,透彻地阐释并系统运用了读者在学习过程中所感觉到的优美的思想与方法,务求读者能真正透彻地弄清一些问题。《高等代数:定理•问题•方法》共分四章,分别为多项式、矩阵与向量、特征值与标准形、内积空间与二次型,每小节以概念与定理、问题与方法的模式进行阐述。
    高等代数: 定理·问题·方法
    搜索《高等代数: 定理·问题·方法》
    图书
    加载中...