悟空视频

    在线播放云盘网盘BT下载影视图书

    图解机器学习 - 图书

    导演:杉山将
    本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。 本书适合所有对机器学习有兴趣的初学者阅读。 187张图解轻松入门 提供可执行的Matlab程序代码 覆盖机器学习中最经典、用途最广的算法 专业实用 东京大学教授、机器学习权威专家执笔,浓缩机器学习的关键知识点 图文并茂 187张图示帮助理解,详略得当,为读懂大部头开路。 角度新颖 基于最小二乘法讲解各种有监督学习的回归和分类算法,以及无监督学习算法。 实战导向 配有可执行的MATLAB程序代码,边学习边实践。
    图解机器学习
    图书

    图解机器学习 - 图书

    导演:杉山将
    本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。 本书适合所有对机器学习有兴趣的初学者阅读。 187张图解轻松入门 提供可执行的Matlab程序代码 覆盖机器学习中最经典、用途最广的算法 专业实用 东京大学教授、机器学习权威专家执笔,浓缩机器学习的关键知识点 图文并茂 187张图示帮助理解,详略得当,为读懂大部头开路。 角度新颖 基于最小二乘法讲解各种有监督学习的回归和分类算法,以及无监督学习算法。 实战导向 配有可执行的MATLAB程序代码,边学习边实践。
    图解机器学习
    图书

    图解机器学习算法 - 图书

    2021计算机·数据库
    导演:秋庭伸也 杉山阿圣 寺田学
    本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从而加深对算法的理解。
    图解机器学习算法
    搜索《图解机器学习算法》
    图书

    图解机器学习算法 - 图书

    2021计算机·数据库
    导演:秋庭伸也 杉山阿圣 寺田学
    本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从而加深对算法的理解。
    图解机器学习算法
    搜索《图解机器学习算法》
    图书

    机器学习图解 - 图书

    导演:路易斯·G·塞拉诺
    阅读本书,即使读者仅掌握高中数学知识,也能理解和应用强大的机器学习技术!简单来讲,机器学习是一套以算法为基础的数据分析技术,当你提供更多数据时,算法可反馈更好的结果。ML支持许多尖端技术,如推荐系统、面部识别软件、智能扬声器,甚至包括自动驾驶汽车。本书不落窠臼,示例丰富,精选的练习十分有趣,插图清晰,讲解机器学习的核心概念。 《机器学习图解》以简明易懂的方式介绍机器学习的算法和技术。本书不谈深奥的术语,只通过基本代数知识提供清晰的解释。你将使用Python构建有趣的项目,包括垃圾邮件检测和图像识别模型;还将学习一些实用技能,以清理和准备数据。 • 分类和划分数据的监督算法 • 清理和简化数据的方法 • 机器学习包和工具 • 复杂数据集的神经网络和集成方法 读者阅读本书前,最好了解Python基础知识,不必了解机器学习知识。
    机器学习图解
    搜索《机器学习图解》
    图书

    机器学习 - 图书

    2016计算机·人工智能
    导演:周志华
    机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2003
    导演:Tom M. Mitchell
    机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从很多学科吸收了成果和概念,包括人工智能、概论论与数理统计、哲学、信息论、生物学、认知科学和控制论等,并以此来理解问题的背景、算法和算法中的隐含假定。 本书展示了机器学习中的核心算法和理论,并阐明了算法的过行过程。书中主要涵盖了目前机器学习中各种最实用的理论和算法,包括概念学习、决策树、神经网络、贝叶斯学习、基于实例的学习、遗传算法、规则学习、基于解释的学习和增强学习等。对每一个主题,作者不仅进行了十分详尽和直观的解释,还给出了实用的算法流程。本书被卡内基梅隆等许多大学作为机器学习课程的教材。机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从...(展开全部)
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    导演:Tom M. Mitchell
    本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。 本书可作为计算机专业 本科生、研究生 教材,也可作为相关领域研究人员、教师的参考书。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2018计算机·人工智能
    导演:赵卫东 董亮
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书内容涵盖了机器学习的基础知识,主要包括机器学习的概论、统计学习基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、进化计算、文本分析等经典的机器学习理论知识,也包括用于大数据机器学习的分布式机器学习算法、深度学习和加强学习等高等级内容。此外,还介绍了机器学习的热门应用领域推荐技术,并给出了华为机器学习平台上的实验。本书深入浅出、内容全面、案例丰富,每章后都有习题和参考文献,便于学生巩固学习,适用于高等院校本科生、研究生机器学习、数据分析、数据挖掘等课程的教材,也可作为对机器学习感兴趣的研究人员和工程技术人员的参考资料。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    导演:Mehryar Mohri
    本书是机器学习领域内一部具有里程碑意义的著作。包括哥伦比亚大学、北京大学在内的多个国内外名校均有以该书为基础开设的研究生课程。全书内容丰富,视野宽阔,深入浅出地介绍了目前机器学习重要的理论和关键的算法。
    机器学习
    搜索《机器学习》
    图书
    加载中...