2024计算机·人工智能
导演:王贤智 叶娟 陈梦园 刘子旭
这是一部从技术安全、监管框架、合规要求、伦理道德等角度全面讲解生成式人工智能安全问题的实战性著作,融合了跨学科专家的技术和经验,作者团队包括安全领域的资深技术精英、微软创新教育专家(MIEE)、生成式人工智能技术专家,以及在大数据企业、法律界深耕多年的知识产权与数据合规方面的专家。
阅读并掌握本书,你将收获以下10个方面知识:
(1)大模型安全的范畴、现状和挑战:包括安全、监管与合规的关键问题,以及国家安全和社会治理角度安全隐患和风险点。
(2)大模型技术层面的安全风险:包括信息安全原则、传统安全风险、识别和分析人类意图的挑战,以及大模型的固有脆弱性。
(3)大模型监管与合规的法律框架:包括全球范围内的AIGC的监管现状,如诉讼压力、执法调查和立法进展,以及国内监管体系和国外典型法域的监管实践。
(4)大模型知识产权合规:在大模型的开发和应用中,如何确保知识产权的合规性,包括著作权、开源协议、专利权、商标权和商业秘密的保护。
(5)大模型数据合规:在大模型的构建过程中如何确保数据合规,包括模型训练、应用和优化等全流程的数据合规。
(6)大模型内容安全:在大模型的应用过程中如何确保内容安全,包括内容监管、内容安全风险和内容安全合规。
(7)大模型算法合规:在大模型的构建和应用开发过程中如何确保算法合规,包括算法备案、人工智能安全评估、算法公开透明、算法生成内容标识、算法反歧视、与算法有关的侵权和算法合规要点总结。
(8)大模型伦理安全:在大模型的构建和应用过程中如何确保伦理安全,包括伦理风险、成因分析、治理实践、应对策略和自查工具表。
(9)大模型的安全保障方案:如何构建一个既安全又可信的大模型环境,包括传统技术层面的安全保障、数据层面的保障策略和可信属性角度的安全防护策略。
(10)生成式人工智能的发展趋势:从技术视角和法律视角,洞察大模型在安全、监管与合规方面的发展趋势。