悟空视频

    在线播放云盘网盘BT下载影视图书

    大模型项目实战:多领域智能应用开发 - 图书

    2024计算机·人工智能
    导演:高强文
    本书系统地讲解了大语言模型的实战应用过程,涵盖基础知识、常见操作和应用开发3个方面,帮助大语言模型的使用者、应用开发者循序渐进地掌握大模型的原理、操作以及多个场景下的应用开发技能。全书共18章,分为三篇: ?基础篇介绍大语言模型的基础知识、应用架构和应用工作模式。 ?操作篇详细讲解大模型的实操环节,包括环境搭建、多种有代表性的开源大语言模型的安装、微调与量化等常见操作。 ?开发篇讲述大语言模型在Chat、辅助编程、RAG、翻译、AI Agent、智能语音对话、数字人、模型训练、AI小镇这9个领域的应用开发过程,从工作原理、源码分析、部署运行和测试验证等方面进行了详细介绍。中间还穿插讲解了VS Code插件的开发,丰富了应用运行的场景。
    大模型项目实战:多领域智能应用开发
    图书

    大模型项目实战:Agent开发与应用 - 图书

    2025计算机·人工智能
    导演:高强文
    这是一本面向初中级读者的Agent学习指南,作者既是资深的AI技术专家,又是经验丰富的项目导师,融合作者亲身实践、培训反馈与官方资源,为Agent使用者和开发者提供了快速上手的实用指导。 本书从基础知识、操作和应用开发3个维度循序渐进地讲解Agent实战技巧,分为三篇: ?基础篇(1~2章) 介绍Agent定义、发展历程、常用开源技术、主要组件等基础知识和开发环境的搭建过程。 ?应用篇(3~6章) 从通用型、任务驱动型、辅助开发型和检索增强型 4大类,通过AutoGPT、MemGPT、BabyAGI、Camel、Devika、CodeFuse-ChatBot、DB-GPT、QAnything这8种具体类型,详细描述Agent的安装、配置和使用等操作步骤。 ?开发篇(7~16章) 展开分析10个不同场景的Agent应用开发实例。一方面,以AgentScope、LangChain、LangGraph、AutoGen、LlamaIndex、CrewAI、Qwen-Agent这7种被广泛应用的开源Agent开发框架为基础,针对每个框架各讲解一个开发案例。另一方面,通过案例介绍Agent开发过程中关键的Function-calling特性及大语言模型开发技术。此外,对基于CogVLM2的多模态模型应用开发,也提供详细的案例演示。
    大模型项目实战:Agent开发与应用
    搜索《大模型项目实战:Agent开发与应用》
    图书

    大模型项目实战:Agent开发与应用 - 图书

    2025计算机·人工智能
    导演:高强文
    这是一本面向初中级读者的Agent学习指南,作者既是资深的AI技术专家,又是经验丰富的项目导师,融合作者亲身实践、培训反馈与官方资源,为Agent使用者和开发者提供了快速上手的实用指导。 本书从基础知识、操作和应用开发3个维度循序渐进地讲解Agent实战技巧,分为三篇: ?基础篇(1~2章) 介绍Agent定义、发展历程、常用开源技术、主要组件等基础知识和开发环境的搭建过程。 ?应用篇(3~6章) 从通用型、任务驱动型、辅助开发型和检索增强型 4大类,通过AutoGPT、MemGPT、BabyAGI、Camel、Devika、CodeFuse-ChatBot、DB-GPT、QAnything这8种具体类型,详细描述Agent的安装、配置和使用等操作步骤。 ?开发篇(7~16章) 展开分析10个不同场景的Agent应用开发实例。一方面,以AgentScope、LangChain、LangGraph、AutoGen、LlamaIndex、CrewAI、Qwen-Agent这7种被广泛应用的开源Agent开发框架为基础,针对每个框架各讲解一个开发案例。另一方面,通过案例介绍Agent开发过程中关键的Function-calling特性及大语言模型开发技术。此外,对基于CogVLM2的多模态模型应用开发,也提供详细的案例演示。
    大模型项目实战:Agent开发与应用
    搜索《大模型项目实战:Agent开发与应用》
    图书

    大模型应用开发 RAG实战课 - 图书

    导演:黄佳
    本书以实战为导向,系统性地讲解了RAG技术的构建与优化。全书内容从数据导入、文本分块、向量嵌入到向量存储、检索优化、响应生成,再到复杂RAG范式的探索,层层递进,帮助读者全面掌握RAG技术的核心知识点和实践技巧。首先聚焦于RAG系统的基础构建,包括数据加载、文本分块、信息嵌入和向量存储;其次深入探讨检索前处理、索引优化、检索后处理和响应生成等关键环节;随后提供了一套完整的RAG系统评估体系,帮助读者量化系统的性能;最后展望RAG技术的未来,介绍了GraphRAG、上下文检索、Modular RAG、Agentic RAG和Multi-Modal RAG等前沿范式。 在推进具身智能落地的实践中,RAG技术正在重构机器人的知识处理范式。本书既有手把手的代码级指导,又包含架构设计的顶层思考,可作为AI工程师的案头工具书,也可作为CTO规划技术栈的决策参考。...(展开全部)
    大模型应用开发 RAG实战课
    搜索《大模型应用开发 RAG实战课》
    图书

    大模型应用开发 RAG实战课 - 图书

    导演:黄佳
    本书以实战为导向,系统性地讲解了RAG技术的构建与优化。全书内容从数据导入、文本分块、向量嵌入到向量存储、检索优化、响应生成,再到复杂RAG范式的探索,层层递进,帮助读者全面掌握RAG技术的核心知识点和实践技巧。首先聚焦于RAG系统的基础构建,包括数据加载、文本分块、信息嵌入和向量存储;其次深入探讨检索前处理、索引优化、检索后处理和响应生成等关键环节;随后提供了一套完整的RAG系统评估体系,帮助读者量化系统的性能;最后展望RAG技术的未来,介绍了GraphRAG、上下文检索、Modular RAG、Agentic RAG和Multi-Modal RAG等前沿范式。 在推进具身智能落地的实践中,RAG技术正在重构机器人的知识处理范式。本书既有手把手的代码级指导,又包含架构设计的顶层思考,可作为AI工程师的案头工具书,也可作为CTO规划技术栈的决策参考。...(展开全部)
    大模型应用开发 RAG实战课
    搜索《大模型应用开发 RAG实战课》
    图书

    大模型RAG应用开发:构建智能生成系统 - 图书

    2025计算机·软件学习
    导演:凌峰
    "《大模型RAG应用开发:构建智能生成系统》系统介绍检索增强生成(RAG)技术的核心概念、开发流程和实际应用。《大模型RAG应用开发:构建智能生成系统》共分为11章,第1~3章详细介绍RAG开发的基础,包括环境搭建、常用工具和模块,帮助读者从零开始理解RAG系统的工作原理与开发技巧;第4~8章聚焦RAG系统的具体搭建,从向量数据库的创建、文本的向量化,到如何构建高效的检索增强模型,为开发RAG应用奠定基础;第9~11章通过实际案例,包括企业文档问答系统、医疗文献检索系统和法律法规查询助手的实际开发,帮助读者在特定领域深入理解和应用RAG技术。 《大模型RAG应用开发:构建智能生成系统》适合RAG技术初学者、大模型和AI研发人员、数据分析和挖掘工程师,以及高年级本科生和研究生阅读,也可作为培训机构和高校相关课程的教学用书或参考书。"
    大模型RAG应用开发:构建智能生成系统
    搜索《大模型RAG应用开发:构建智能生成系统》
    图书

    大模型应用开发:核心技术与领域实践 - 图书

    2024计算机·编程设计
    导演:于俊 刘淇 程礼磊 程明月
    本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。 本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大模型的构建流程、Transformer模型,以及模型微调、对齐优化、提示工程等核心技术,之后介绍了推理优化、大模型训练、大模型评估、大模型部署等拓展技术。应用开发实践(第4~10章)详细讲解大模型插件应用开发、RAG实践,以及智能客服问答、学科知识问答、法律领域应用、医疗领域应用、智能助写平台等多领域的实践。
    大模型应用开发:核心技术与领域实践
    搜索《大模型应用开发:核心技术与领域实践》
    图书

    大模型应用开发:方法与案例 - 图书

    2025计算机·编程设计
    导演:郑天民
    这是一本案例驱动的LLM应用开发指南,适合具备一定编程基础的开发者阅读。通过本书,读者可以在短时间内掌握多种类型的LLM应用的开发方法,以及基于现实中的业务场景设计并实现符合用户真实诉求的AI系统。对此,本书提供了丰富的“即插即用”的案例代码和最佳实践。 本书分为8章,全面阐述LLM应用的技术体系、开发模式和落地案例,具体内容如下: 第1章 先介绍LLM的基本概念和应用场景,然后介绍LLM应用开发的核心技术,并引出主流的集成性开发框架。 第2~8章 分析大语言模型应用的场景案例,即基于常见业务场景,梳理LLM应用的系统架构和实现过程,并采用主流的开源框架完成案例场景的开发落地。每章讲解一个系统案例,包含翻译器工具、通用的文档检索助手、纠错型RAG应用、智能化的简历匹配服务、多模态处理器、定制化Agent开发、混合Agent架构设计7个具体的案例。针对每一个案例,都提供具体的应用场景分析和系统架构设计,强调其背后通用的设计思想和应用方法。同时,案例中结合LangChain、LangChain4j、LlamaIndex这3款主流的开发框架,详细介绍其功能特性、使用方法和开发实现。
    大模型应用开发:方法与案例
    搜索《大模型应用开发:方法与案例》
    图书

    大模型应用开发极简入门 - 图书

    导演:奥利维耶·卡埃朗
    本书为广受读者喜爱的畅销书升级版,旨在让读者快速、简单地上手大模型应用开发。 本书为初学者提供了一份清晰、全面的“最小可用知识”,带领你快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。升级版在旧版的基础上进行了全面更新,融入了大模型应用开发的最新进展,比如 RAG、GPT-4 新特性的应用解析等。本书提供了大量简单易学的示例,帮你理解相关概念并将其应用在自己的项目中。 准备好了吗?只需了解 Python,你即可将本书作为进入大模型时代的启动手册,开发出自己的大模型应用。 编辑推荐 1.【简单】2 小时上手构建你的头一个原生 AI 应用 2.【通透】快速、系统、透彻理解大模型底层工作原理 3.【全面】提示工程、微调、RAG 设计、Agent 开发 4.【实操】6 大应用场景项目案...(展开全部)
    大模型应用开发极简入门
    搜索《大模型应用开发极简入门》
    图书

    大模型应用落地:实战AI搜索 - 图书

    2025计算机·人工智能
    导演:吕思
    本书基于大模型成功赋能AI搜索经验总结,系统梳理AI搜索的实现原理、核心技术、关键工具及模块化实现,带你从0到1搭建专属AI搜索应用,跑通全流程;配套全流程源码,降低开发门槛,轻松构建专属AI搜索应用。 本书共8章。第1章从多个维度分析大模型技术,帮助读者理解其技术变革与应用的本质,最后分析了大模型落地难点,让读者对大模型有全面认知。第2章梳理AI搜索从关键词匹配到语义理解的发展路径,并以LeptonSearch为例解析源码实现,帮读者构建AI搜索的初步认知框架。第3章全面解析查询理解、规划执行、答案内容优化以及答案缓存优化等AI搜索的关键技术,旨在帮助读者深入理解AI搜索系统的内部运作机制与实现。第4章介绍OpenAI API、DeepSeek、LangChain、Milvus等技术及其应用,帮助读者降低开发门槛。第5章讲解如何从零开始构建一个AI搜索系统的后端架构,涵盖后端技术方案设计、基础框架构建,为后续功能开发打好基础。第6章详解AI搜索系统的五大核心模块(实体、分析器、检索器、生成器、过滤器)的功能定位与代码实现,以构建一个结构清晰、职责分明的AI搜索引擎内核。第7章聚焦于系统的自动化调度设计,如动作类的定义与实现、调度器模块的构建,提升系统的智能化水平。第8章详解应用层(DAO操作层、Service逻辑层、Controller接口层)的开发流程,最后提供多个接口实现示例,并通过3个场景来测试AI搜索效果。
    大模型应用落地:实战AI搜索
    搜索《大模型应用落地:实战AI搜索》
    图书
    加载中...