悟空视频

    在线播放云盘网盘BT下载影视图书

    强化学习:原理与Python实战 - 图书

    2023计算机·编程设计
    导演:肖智清
    全书分为三个部分: ?第1章:从零开始介绍强化学习的背景知识,介绍环境库Gym的使用。 ?第2~15章:基于折扣奖励离散时间Markov决策过程模型,介绍强化学习的主干理论和常见算法。采用数学语言推导强化学习的基础理论,进而在理论的基础上讲解算法,并为算法提供配套代码实现。基础理论的讲解突出主干部分,算法讲解全面覆盖主流的强化学习算法,包括经典的非深度强化学习算法和近年流行的强化学习算法。Python实现和算法讲解一一对应,对于深度强化学习算法还给出了基于TensorFlow 2和PyTorch 1的对照实现。 ?第16章:介绍其他强化学习模型,包括平均奖励模型、连续时间模型、非齐次模型,半Markov模型、部分可观测模型等,以便更好了解强化学习研究的全貌。
    强化学习:原理与Python实战
    图书

    强化学习:原理与Python实现 - 图书

    2021计算机·编程设计
    导演:肖智清
    全书分为三个部分。第壹部分了解强化学习应用,了解强化学习基本知识,搭建强化学习测试环境。该部分包括:强化学习的概况、强化学习简单示例、强化学习算法的常见思想、强化学习的应用、强化学习测试环境的搭建。第二部分介绍强化学习理论与深度强化学习算法。强化学习理论部分:Markov决策过程的数学描述、Monte Carlo方法和时序差分方法的数学理论;深度强化学习算法部分:详细剖析全部具有重要影响力的深度强化学习算法,结合TensorFlow实现源码。第三部分介绍强化学习综合应用案例。
    强化学习:原理与Python实现
    搜索《强化学习:原理与Python实现》
    图书

    强化学习:原理与Python实现 - 图书

    2021计算机·编程设计
    导演:肖智清
    全书分为三个部分。第壹部分了解强化学习应用,了解强化学习基本知识,搭建强化学习测试环境。该部分包括:强化学习的概况、强化学习简单示例、强化学习算法的常见思想、强化学习的应用、强化学习测试环境的搭建。第二部分介绍强化学习理论与深度强化学习算法。强化学习理论部分:Markov决策过程的数学描述、Monte Carlo方法和时序差分方法的数学理论;深度强化学习算法部分:详细剖析全部具有重要影响力的深度强化学习算法,结合TensorFlow实现源码。第三部分介绍强化学习综合应用案例。
    强化学习:原理与Python实现
    搜索《强化学习:原理与Python实现》
    图书

    深度强化学习实战 - 图书

    导演:亚历山大 · 扎伊
    本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。
    深度强化学习实战
    搜索《深度强化学习实战》
    图书

    深度强化学习实战 - 图书

    2023科学技术·工业技术
    导演:亚历山大·扎伊 布兰登·布朗
    本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。
    深度强化学习实战
    搜索《深度强化学习实战》
    图书

    深度强化学习实战 - 图书

    2023科学技术·工业技术
    导演:亚历山大·扎伊 布兰登·布朗
    本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。
    深度强化学习实战
    搜索《深度强化学习实战》
    图书

    强化学习 - 图书

    2020计算机·编程设计
    导演:邹伟 鬲玲 刘昱杓
    《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。 《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。
    强化学习
    搜索《强化学习》
    图书

    强化学习 - 图书

    2020计算机·编程设计
    导演:邹伟 鬲玲 刘昱杓
    《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。 《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。
    强化学习
    搜索《强化学习》
    图书

    强化学习 - 图书

    导演:Richard S. Sutton
    《强化学习(第2版)》作为强化学习思想的深度解剖之作,被业内公认为是一本强化学习基础理论的经典著作。它从强化学习的基本思想出发,深入浅出又严谨细致地介绍了马尔可夫决策过程、蒙特卡洛方法、时序差分方法、同轨离轨策略等强化学习的基本概念和方法,并以大量的实例帮助读者理解强化学习的问题建模过程以及核心的算法细节。 《强化学习(第2版)》适合所有对强化学习感兴趣的读者阅读、收藏。
    强化学习
    搜索《强化学习》
    图书

    强化学习 - 图书

    导演:Marco Wiering
    本书共有19章,分为六大部分,详细介绍了强化学习中各领域的基本理论和新进展,内容包括:MDP、动态规划、蒙特卡罗方法、批处理强化学习、TD学习、Q学习、策略迭代的小二乘法、迁移学习、贝叶斯强化学习、、一阶逻辑MDP、层次式强化学习、演化计算、预测性定义状态表示、去中心化的部分可观察MDP、博弈论和多学习器强化学习等内容,并阐述强化学习与心理和神经科学、游戏领域、机器人领域的关系和应用,后提出未来发展趋势及研究热点问题,有助于年轻的研究者了解整个强化学习领域,发现新的研究方向。本书适合作为高等院校机器学习相关课程的参考书,也可作为人工智能领域从业技术人员的参考用书。
    强化学习
    搜索《强化学习》
    图书
    加载中...