悟空视频

    在线播放云盘网盘BT下载影视图书

    推荐系统与深度学习 - 图书

    导演:黄昕
    本书的内容设置由浅入深,从传统的推荐算法过渡到近年兴起的深度学习技术。不管是初学者,还是有一定经验的从业人员,相信都能从本书的不同章节中有所收获。 区别于其他推荐算法书籍,本书引入了已被实践证明效果较好的深度学习推荐技术,包括Word2Vec、Wide & Deep、DeepFM、GAN 等技术应用,并给出了相关的实践代码;除了在算法层面讲解推荐系统的实现,还从工程层面详细阐述推荐系统如何搭建.
    推荐系统与深度学习
    图书

    深度学习推荐系统 - 图书

    2020科学技术·工业技术
    导演:王喆
    深度学习在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技 术、推荐系统工程实现、模型评估体系、业界前沿实践等几个方面介绍了这场技术革命中的主 流技术要点。
    深度学习推荐系统
    搜索《深度学习推荐系统》
    图书

    深度学习推荐系统 - 图书

    导演:王喆
    深度学习在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技术、推荐系统工程实现、模型评估体系、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。 《深度学习推荐系统》既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本 科生、研究生、博士生阅读,帮助他们建立深度学习推荐系统的技术框架,通过学习前沿案例 加强深度学习理论与推荐系统工程实践的融合能力。
    深度学习推荐系统
    搜索《深度学习推荐系统》
    图书

    深度学习推荐系统2.0 - 图书

    导演:王喆
    深度学习和大模型技术在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技术、大模型、AIGC、模型工程实现、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。 《深度学习推荐系统2.0(全彩)》既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本科生、研究生、博士生阅读,帮助建立深度学习推荐系统的技术框架。通过学习前沿案例,读者可加强深度学习理论与推荐系统工程实践的融合能力。
    深度学习推荐系统2.0
    搜索《深度学习推荐系统2.0》
    图书

    实用推荐系统 - 图书

    2021
    导演:Kim Falk
    要构建一个实用的“智能”推荐系统,不仅需要有好的算法,还需要了解接收推荐的用户。本书分为两部分,第一部分侧重于基础架构,主要介绍推荐系统的工作原理,展示如何创建推荐系统,以及给应用程序增加推荐系统时,应该如何收集和应用数据;第二部分侧重于算法,介绍推荐系统的算法,以及如何使用系统收集的数据来计算向用户推荐什么内容。作者还讲述了如何使用最流行的推荐算法,并剖析它们在Amazon 和Netflix 等网站上的实际应用。 《实用推荐系统》适合对推荐系统感兴趣的开发人员阅读,从事数据科学行业的读者也能从书中获得启发。
    实用推荐系统
    搜索《实用推荐系统》
    图书

    统计推荐系统 - 图书

    导演:Deepak K. Agarwal
    推荐系统无处不在,已经成为我们日常生活的一部分。本书由LinkedIn公司的两位技术专家撰写,着眼于推荐系统的核心——统计方法,不仅介绍算法理论,而且包含实验分析及结果展示,分享了作者丰富的实战经验。 书中对推荐系统进行了全面讨论,特别是面向日益突显的多反馈和多目标优化问题,深入分析了当前先进的统计方法,如自适应序贯设计(多臂赌博机方法)、双线性随机效应模型(矩阵分解)以及基于MapReduce分布式框架的可伸缩模型,为热门推荐和个性化推荐提供了实用的解决方案。全书将基于回归的响应预测方法作为主要工具,兼顾实验设计和统计模型开发,关注探索和利用之间的权衡。
    统计推荐系统
    搜索《统计推荐系统》
    图书

    推荐系统实践 - 图书

    2012计算机·计算机综合
    导演:项亮
    本书从数据出发,一步步地介绍在得到什么数据的时候可以设计怎样的推荐系统。面向广大的推荐系统开发人员,以实战为基础,深入浅出地介绍每种推荐方法背后的理论基础,着重讨论每种算法的实现、在实际系统中的效果、方法的优点、缺陷以及解决方法。本书的几位作者是目前国内推荐系统方面做得最好的技术人员。
    推荐系统实践
    搜索《推荐系统实践》
    图书

    推荐系统实践 - 图书

    导演:项亮
    内容简介: 随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(information overload)的时代 。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:对于信息消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾的重要工具。推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。
    推荐系统实践
    搜索《推荐系统实践》
    图书

    实用推荐系统 - 图书

    2021
    导演:Kim Falk
    要构建一个实用的“智能”推荐系统,不仅需要有好的算法,还需要了解接收推荐的用户。本书分为两部分,第一部分侧重于基础架构,主要介绍推荐系统的工作原理,展示如何创建推荐系统,以及给应用程序增加推荐系统时,应该如何收集和应用数据;第二部分侧重于算法,介绍推荐系统的算法,以及如何使用系统收集的数据来计算向用户推荐什么内容。作者还讲述了如何使用最流行的推荐算法,并剖析它们在Amazon 和Netflix 等网站上的实际应用。 《实用推荐系统》适合对推荐系统感兴趣的开发人员阅读,从事数据科学行业的读者也能从书中获得启发。
    实用推荐系统
    搜索《实用推荐系统》
    图书

    图计算与推荐系统 - 图书

    2023计算机·理论知识
    导演:刘宇
    这是一本全面讲解图计算、知识图谱及其在推荐系统领域应用的专著,为读者基于神经网络构建推荐系统提供了详细指导,是作者在相关领域10余年经验的总结。掌握本书内容,读者可开发出能处理多模态数据的推荐算法系统,提供更丰富和准确的推荐体验。 本书主要内容分为两篇。 第一篇 图数据以及图模型(第1-3章) 对图数据、图神经网络、知识图谱的基础知识进行了梳理,帮助读者掌握着3项技术的关键原理与算法,为后面的学习打下基础。 第二篇 推荐系统(第4-9章) 首先介绍了推荐系统的架构,包括逻辑架构、技术架构和数据建模,以及基于GNN的推荐系统架构;然后详细讲解了如何基于GNN构建推荐系统,以及基于图的推荐算法;再接着讲解了知识图谱在推荐系统中的应用以及相关的算法模型;最后,探讨了推荐系统领域当前的热点问题、研究方向以及工业级推荐系统领域的核心难题 本书注重实战,故理论知识简练且极具针对性,包含大量实战案例,图文并茂,易于阅读。
    图计算与推荐系统
    搜索《图计算与推荐系统》
    图书
    加载中...