悟空视频

    在线播放云盘网盘BT下载影视图书

    数据科学导引 - 图书

    2017
    导演:欧高炎、朱占星、董彬、鄂维南
    本书是博雅大数据学院针对新开设的“数据科学与大数据技术”专业编写的数据科学导论课程教材。全书内容共分十五章,包括绪论、数据预处理、回归模型、分类模型、集成模型、聚类模型、关联规则挖掘、降维、特征选择、EM算法、概率图模型、文本分析、图与网络分析、深度学习、分布式计算。附录部分对相关的基础知识做了简要介绍。本书还提供了大量的数据分析实践案例,有助于加深读者对理论知识的理解,及培养其实际应用能力。
    数据科学导引
    图书

    数据科学 - 图书

    2025
    导演:约翰·D.凯莱赫
    约翰· D.凯莱赫(John D. Kelleher) 布伦丹·蒂尔尼(Brendan Tierney) 著:约翰· D.凯莱赫(John D. Kelleher) 是都柏林理工学院计算机科学学院的教授以及信息、通信和娱乐研究所的学术负责人。他的研究得到了ADAPT中心的支持,该中心由爱尔兰科学基金会(Grant 13 / RC / 2106)资助,同时也接受欧洲区域发展基金的资助。 他还是《Fundamentals of Machine Learning for Predictive Data Analytics》的作者之一。 布伦丹·蒂尔尼(Brendan Tierney)是都柏林理工学院计算机科学学院的讲师,同时也是Oracle ACE 主任,还著有多本基于Oracle技术的数据挖掘类著作。
    数据科学
    搜索《数据科学》
    图书

    数据科学 - 图书

    导演:Hadley Wickham
    学习如何利用R语言洞察、知晓、理解原始数据。 《数据科学:R语言实现(影印版 英文版)》介绍了R、RStudio以及tidyverse,后者是一组相互配合工作的R包,能够使数据科学快速、流畅、富有乐趣。 《数据科学:R语言实现(影印版 英文版)》旨在帮助你尽快地上手数据科学相关的工作,并不要求读者具备编程经验。 《数据科学:R语言实现(影印版 英文版)》Hadley Wickham和Garrett Grolernund将一步步指导你对数据进行导入、提炼、探索以及建模并发布成果。除了处理数据所需的基本工具,你还将会对数据科学的周期拥有一个完整的、宏观的理解。
    数据科学
    搜索《数据科学》
    图书

    数据科学入门 - 图书

    导演:Joel Grus
    数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。 作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。 通过阅读本书,你可以: 学到一堂Python速成课; 学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据科学中的; 掌握如何收集、探索、清理、转换和操作数据; 深入理解机器学习的基础; 运用k-近邻、朴素贝叶斯、线性回归和逻辑回归、决策树、神经网络和聚类等各种数据模型; 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库。
    数据科学入门
    搜索《数据科学入门》
    图书

    R数据科学 - 图书

    导演:Hadley Wickham
    本书的目标是教会读者使用最重要的数据科学工具,从而为实施数据科学奠定坚实的基础。读完本书后,你将掌握R语言的精华,并能够熟练使用多种工具来解决各种数据科学难题。每一章都按照这样的顺序组织内容:先给出一些引人入胜的示例,以便你可以整体了解这一章的内容,然后再深入细节。本书的每一节都配有习题,以帮助你实践所学到的知识。
    R数据科学
    搜索《R数据科学》
    图书

    数据科学实战 - 图书

    导演:Rachel Schutt
    本书旨在让读者能够举一反三地解决重要问题,内容包括:数据科学及工作流程、统计模型与机器学习算法、信息提取与统计变量创建、数据可视化与社交网络、预测模型与因果分析、数据预处理与工程方法。另外,本书还将带领读者展望数据科学未来的发展。
    数据科学实战
    搜索《数据科学实战》
    图书

    数据科学实战 - 图书

    导演:Rachel Schutt
    本书旨在让读者能够举一反三地解决重要问题,内容包括:数据科学及工作流程、统计模型与机器学习算法、信息提取与统计变量创建、数据可视化与社交网络、预测模型与因果分析、数据预处理与工程方法。另外,本书还将带领读者展望数据科学未来的发展。
    数据科学实战
    搜索《数据科学实战》
    图书

    数据科学入门 - 图书

    导演:Joel Grus
    数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。 作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。 通过阅读本书,你可以: 学到一堂Python速成课; 学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据科学中的; 掌握如何收集、探索、清理、转换和操作数据; 深入理解机器学习的基础; 运用k-近邻、朴素贝叶斯、线性回归和逻辑回归、决策树、神经网络和聚类等各种数据模型; 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库。
    数据科学入门
    搜索《数据科学入门》
    图书

    Python数据科学实战 - 图书

    2024计算机·计算机综合
    导演:尤利•瓦西列夫
    本书主要从实战角度讲述了如何处理、分析和可视化数据,如何用数据建立各种统计学或机器学习模型。本书首先介绍如何使用Python代码获取、转换和分析数据;接着讲述如何使用Python中的数据结构和第三方库;然后展示如何以各种格式加载数据,如何对数据进行分组与汇总,如何创建图表和可视化数据;最后讨论如何解决实际的问题。 本书适合希望使用Python处理和分析数据的开发人员阅读,也可供计算机相关专业的师生参考。
    Python数据科学实战
    搜索《Python数据科学实战》
    图书

    Python数据科学指南 - 图书

    导演:印度 Gopi Subramanian 萨伯拉曼尼安
    本书从讲解如何在数据科学中应用Python开始,陆续介绍了Python的工作环境,如何用Python分析数据,以及数据挖掘的概念,然后又扩展到机器学习。本书还涵盖了缩减原则、集成方法、随机森林、旋转森林和超树等方面的内容,这些都是一个成功的数据科学专家所必需掌握的。 阅读本书,你将学会: ■ 揭示数据科学算法的完整范畴; ■ 高效地掌握和使用numpy、scipy、scikit-learn和matplotlib等Python库; ■ 了解进阶回归方法的建模和变量选择; ■ 进一步彻底理解集成方法的潜在含义及实施; ■ 在各种各样的数值和文本数据集上解决实际问题; ■ 熟悉先进的算法,如梯度提升、随机森林、旋转森林等。 本书特色: ■ 内容明确且易于跟学; ■ 甄选重要的任务与问题; ■ 精心组织编排内容,有效解决问题; ■ 清晰易懂的讲解方式; ■ ...(展开全部)
    Python数据科学指南
    搜索《Python数据科学指南》
    图书
    加载中...