悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习与深度学习算法基础 - 图书

    导演:贾壮
    本书共分为上下两篇,共18章:其中第一篇为经典机器学习模型部分,主要讲解了常用的机器学习经典模型。第1章讲解线性回归和lasso回归,岭回归。第2章介绍SVM模型。第3章介绍逻辑斯蒂回归。第4章介绍决策树模型。第5章介绍k近邻算法。第6章介绍朴素贝叶斯模型。第7章介绍线性判别分析与主成分分析。第8章介绍流形学习。第9章介绍聚类算法。第10章介绍稀疏编码。第11章介绍T-SVM模型。第12章介绍集成算法与提升算法。第二篇为深度学习和神经网络部分,主要介绍了时下蕞流形和通用的一些模型。第13章介绍了感知机模型,并简述了深度学习和神经网络的相关脉络。第14章介绍了深度学习网络的相关组成部分。第15章介绍了CNN的基本原理。第16章介绍了RNN的基本原理。第17章介绍了GAN的基本原理。最后,在第18章对本书进行了总结。
    机器学习与深度学习算法基础
    图书

    机器学习与深度学习 - 图书

    2022计算机·编程设计
    导演:王衡军
    本书以任务为导向,讨论了机器学习和深度学习的主要问题,包括聚类、回归、分类、标注、降维、特征工程、超参数调优、序列决策(强化学习)和对抗攻击等。书中对上述每个问题,分别从决策函数类模型、概率类模型和神经网络类模型三个角度来讨论具体的实现算法。本书在内容上兼顾基础知识和应用实践。总体上,以基本理论知识为主线,逐步展开,从概念入手,逐步讨论算法思想,着重考虑知识的关联性,最后落实到机器学习扩展库和深度学习框架的具体应用。具体到每个模型,采用以示例入手、逐渐深入的方式,尽量给出详尽的分析或推导。本书的特点是主要通过示例来讨论相关模型,适合初学者入门使用。本书示例代码采用Python3程序设计语言编写。传统机器学习算法的应用示例主要以ScikitLearn机器学习扩展库来实现,隐马尔可夫模型示例用hmmlearn扩展库来实现,条件随机场模型示例用CRF++工具来实现。深度学习算法的示例采用TensorFlow2框架和MindSpore框架来实现。
    机器学习与深度学习
    搜索《机器学习与深度学习》
    图书

    机器学习算法 - 图书

    2020科学技术·工业技术
    导演:朱塞佩·博纳科尔索
    本书介绍了数据科学领域常用的所有重要机器学习算法以及TensorFlow和特征工程等相关内容。涵盖的算法包括线性回归、逻辑回归、支持向量机、朴素贝叶斯、k均值、随机森林等,这些算法可以用于监督学习、非监督学习、强化学习或半监督学习。 在本书中,你将学会如何使用这些算法来解决所遇到的问题,并了解这些算法的工作方式。本书还将介绍自然语言处理和推荐系统,这些内容将帮助大家进行多种算法的实践。
    机器学习算法
    搜索《机器学习算法》
    图书

    机器学习基础 - 图书

    导演:Mehryar Mohri
    本书从概率近似正确(PAC)理论出发探讨机器学习的基础理论与典型算法,包括PAC学习框架、VC-维、支持向量机、核方法、在线学习、多分类、排序、回归、降维、强化学习等丰富的内容。此外,附录部分简要回顾了与机器学习密切相关的概率论、凸优化、矩阵以及范数等必要的预备知识。 本书重在介绍典型算法的理论支撑并指出算法在实际应用中的关键点,注重理论细节与证明过程,可作为高等院校机器学习、统计学等课程的教材,或作为相关领域研究人员的参考读物。
    机器学习基础
    搜索《机器学习基础》
    图书

    机器学习基础 - 图书

    导演:Mehryar Mohri
    本书从概率近似正确(PAC)理论出发探讨机器学习的基础理论与典型算法,包括PAC学习框架、VC-维、支持向量机、核方法、在线学习、多分类、排序、回归、降维、强化学习等丰富的内容。此外,附录部分简要回顾了与机器学习密切相关的概率论、凸优化、矩阵以及范数等必要的预备知识。 本书重在介绍典型算法的理论支撑并指出算法在实际应用中的关键点,注重理论细节与证明过程,可作为高等院校机器学习、统计学等课程的教材,或作为相关领域研究人员的参考读物。
    机器学习基础
    搜索《机器学习基础》
    图书

    机器学习算法实践 - 图书

    2018
    导演:王建芳
    个性化推荐能够根据用户的历史行为显式或者隐式地挖掘用户潜在的兴趣和需求,并为其推送个性化信息,因此受到研究者的追捧及工业界的青睐,其研究具有重大的学术价值及商业应用价值,已广泛应用于大型电子商务平台、社交平台、新闻客户端以及其他各类旅游和娱乐类网站中。 本书内容丰富,较全面地介绍了基于协同过滤的推荐系统存在的问题、解决方法和评估策略,主要内容涉及协同过滤推荐算法中的时序技术、矩阵分解技术和社交网络信任技术等知识。 本书可供从事推荐系统、人工智能、机器学习、模式识别和信息检索等领域的科研人员及研究生阅读、参考。
    机器学习算法实践
    搜索《机器学习算法实践》
    图书

    图解机器学习算法 - 图书

    2021计算机·数据库
    导演:秋庭伸也 杉山阿圣 寺田学
    本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从而加深对算法的理解。
    图解机器学习算法
    搜索《图解机器学习算法》
    图书

    图解机器学习算法 - 图书

    2021计算机·数据库
    导演:秋庭伸也 杉山阿圣 寺田学
    本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从而加深对算法的理解。
    图解机器学习算法
    搜索《图解机器学习算法》
    图书

    机器学习数学基础 - 图书

    2022计算机·人工智能
    导演:齐伟
    本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
    机器学习数学基础
    搜索《机器学习数学基础》
    图书

    机器学习数学基础 - 图书

    2022计算机·人工智能
    导演:齐伟
    本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
    机器学习数学基础
    搜索《机器学习数学基础》
    图书
    加载中...