悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习中的概率思维 - 图书

    2025计算机·人工智能
    导演:翟中华 朱雅哲
    本书深入剖析机器学习中的概率思维,从基础理论出发,结合经典案例,阐述如何将概率思维巧妙地应用于机器学习算法,帮助读者理解数据背后的规律与不确定性。除引言外,全书内容分为5章,包括贝叶斯定理中的概率思维、朴素贝叶斯算法中的概率思维、极大似然估计和最大后验估计、贝叶斯网络、马尔可夫链和隐马尔可夫模型。本书适合机器学习领域的工程师、研究员阅读,也可作为计算机科学、统计学、电子工程、计量经济学等领域的技术人员的参考用书。
    机器学习中的概率思维
    图书

    机器学习中的概率思维 - 图书

    2025计算机·人工智能
    导演:翟中华 朱雅哲
    本书深入剖析机器学习中的概率思维,从基础理论出发,结合经典案例,阐述如何将概率思维巧妙地应用于机器学习算法,帮助读者理解数据背后的规律与不确定性。除引言外,全书内容分为5章,包括贝叶斯定理中的概率思维、朴素贝叶斯算法中的概率思维、极大似然估计和最大后验估计、贝叶斯网络、马尔可夫链和隐马尔可夫模型。本书适合机器学习领域的工程师、研究员阅读,也可作为计算机科学、统计学、电子工程、计量经济学等领域的技术人员的参考用书。
    机器学习中的概率思维
    图书

    概率机器学习 - 图书

    2025
    导演:凯文·P.墨菲
    本书通过概率建模和贝叶斯决策理论的统一视角,详细且与时俱进地介绍了机器学习(包括深度学习)的理论和方法。书中涵盖了数学背景(包括线性代数和优化理论)、基础的监督学习方法(包括线性回归、逻辑回归和深度神经网络),以及更高级的主题(包括迁移学习和无监督学习)。章节末尾的练习让读者能够应用所学知识,附录部分则对书中使用的符号进行了说明。 本书源自作者2012年的著作《机器学习:概率视角》,它不仅仅是一个简单的更新版本,更是一本全新的著作,反映了自2012年以来该领域的巨大发展,尤其是深度学习方面的进展。由于篇幅限制,新版分为上下两卷:《概率机器学习:基础篇》和《概率机器学习:进阶篇》,本书是上卷基础篇,下卷进阶篇将继续采用相同的概率方法,深入探讨更高级的主题。 新版的另一个主要变化是所有的软件代码都使用Python而不是MATLAB来实现,新代码使用了标准...(展开全部)
    概率机器学习
    搜索《概率机器学习》
    图书

    机器学习中的概率统计: Python语言描述 - 图书

    2020
    导演:张雨萌
    本书围绕机器学习算法中涉及的概率统计知识展开介绍,沿着概率思想、变量分布、参数估计、随机过程和统计推断的知识主线进行讲解,结合数学的本质内涵,用浅显易懂的语言讲透深刻的数学思想,帮助读者构建理论体系。同时,作者在讲解的过程中注重应用场景的延伸,并利用Python工具无缝对接工程应用,帮助读者学以致用。 全书共5章。第1章以条件概率和独立性作为切入点,帮助读者建立认知概率世界的正确视角。第2章介绍随机变量的基础概念和重要分布类型,并探讨多元随机变量间的重要关系。第3章介绍极限思维以及蒙特卡罗方法,并重点分析极大似然估计方法以及有偏无偏等重要性质,最后拓展到含有隐变量的参数估计问题,介绍EM算法的原理及其应用。第4章由静态的随机变量过渡到动态的随机过程,重点介绍马尔可夫过程和隐马尔可夫模型。第5章聚焦马尔可夫链-蒙特卡罗方法,并列举实例展示Metropo...(展开全部)
    机器学习中的概率统计: Python语言描述
    搜索《机器学习中的概率统计: Python语言描述》
    图书

    机器学习中的线性与非线性思维 - 图书

    2025计算机·人工智能
    导演:翟中华
    本书深入剖析机器学习中的线性思维和非线性思维,从基础理论出发,结合经典例子,阐述如何将线性思维和非线性思维巧妙应用于机器学习算法,帮助读者理解数据背后的规律与不确定性。除引言外,全书内容分为7章,包括线性回归中的线性思维、感知机分类中的线性思维、逻辑回归中的线性思维、支持向量机中的线性思维、核方法、高斯核函数的非线性映射作用、深度学习中的非线性。本书适合机器学习领域的工程师、研究员阅读,也可作为计算机科学、统计学、电子工程、计量经济学等领域的技术人员的参考用书。
    机器学习中的线性与非线性思维
    搜索《机器学习中的线性与非线性思维》
    图书

    机器学习中的线性与非线性思维 - 图书

    2025计算机·人工智能
    导演:翟中华
    本书深入剖析机器学习中的线性思维和非线性思维,从基础理论出发,结合经典例子,阐述如何将线性思维和非线性思维巧妙应用于机器学习算法,帮助读者理解数据背后的规律与不确定性。除引言外,全书内容分为7章,包括线性回归中的线性思维、感知机分类中的线性思维、逻辑回归中的线性思维、支持向量机中的线性思维、核方法、高斯核函数的非线性映射作用、深度学习中的非线性。本书适合机器学习领域的工程师、研究员阅读,也可作为计算机科学、统计学、电子工程、计量经济学等领域的技术人员的参考用书。
    机器学习中的线性与非线性思维
    搜索《机器学习中的线性与非线性思维》
    图书

    机器学习 - 图书

    2016计算机·人工智能
    导演:周志华
    机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2018计算机·人工智能
    导演:赵卫东 董亮
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书内容涵盖了机器学习的基础知识,主要包括机器学习的概论、统计学习基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、进化计算、文本分析等经典的机器学习理论知识,也包括用于大数据机器学习的分布式机器学习算法、深度学习和加强学习等高等级内容。此外,还介绍了机器学习的热门应用领域推荐技术,并给出了华为机器学习平台上的实验。本书深入浅出、内容全面、案例丰富,每章后都有习题和参考文献,便于学生巩固学习,适用于高等院校本科生、研究生机器学习、数据分析、数据挖掘等课程的教材,也可作为对机器学习感兴趣的研究人员和工程技术人员的参考资料。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2003
    导演:Tom M. Mitchell
    机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从很多学科吸收了成果和概念,包括人工智能、概论论与数理统计、哲学、信息论、生物学、认知科学和控制论等,并以此来理解问题的背景、算法和算法中的隐含假定。 本书展示了机器学习中的核心算法和理论,并阐明了算法的过行过程。书中主要涵盖了目前机器学习中各种最实用的理论和算法,包括概念学习、决策树、神经网络、贝叶斯学习、基于实例的学习、遗传算法、规则学习、基于解释的学习和增强学习等。对每一个主题,作者不仅进行了十分详尽和直观的解释,还给出了实用的算法流程。本书被卡内基梅隆等许多大学作为机器学习课程的教材。机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从...(展开全部)
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    导演:Mehryar Mohri
    本书是机器学习领域内一部具有里程碑意义的著作。包括哥伦比亚大学、北京大学在内的多个国内外名校均有以该书为基础开设的研究生课程。全书内容丰富,视野宽阔,深入浅出地介绍了目前机器学习重要的理论和关键的算法。
    机器学习
    搜索《机器学习》
    图书
    加载中...