悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习数学基础 - 图书

    2022计算机·人工智能
    导演:齐伟
    本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
    机器学习数学基础
    图书

    机器学习数学基础 - 图书

    2022计算机·人工智能
    导演:齐伟
    本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
    机器学习数学基础
    图书

    机器学习数学基础一本通 - 图书

    2024科学技术·工业技术
    导演:洪锦魁
    这是一本具有高中数学知识就能读懂的机器学习图书,书中通过大量程序实例,将复杂的公式重新拆解,详细、清晰地解读了机器学习中常用的数学知识,一步步带领读者进入机器学习的领域。本书共 22 章,主要讲解了数据可视化、math 模块、sympy 模块、numpy 模块、方程式、函数、最小平方法、集合、概率、贝叶斯定理、指数、对数、欧拉数、逻辑函数、三角函数、大型运算符、向量、矩阵与线性回归等数学知识。
    机器学习数学基础一本通
    搜索《机器学习数学基础一本通》
    图书

    机器学习的数学基础 - 图书

    导演:[英]马克·彼得·戴森罗特 [英]A. 阿尔多·费萨尔 [马来西亚]翁承顺
    本书弥补了纯数学书籍和机器学习书籍存在的单一性问题,介绍了理解机器学习所需的必备数学概念,例如线性代数、解析几何、矩阵分解、向量微积分、优化、概率和统计,并使用这些概念推导出了四种核心机器学习方法:线性回归、主成分分析、高斯混合模型和支持向量机。本书每一章都包括一些例子,大部分章还配有习题,以方便读者测试对所学知识的理解程度。本书适合数据科学专业和计算机科学专业的学生,以及算法工程师与机器学习领域相关从业者阅读。
    机器学习的数学基础
    搜索《机器学习的数学基础》
    图书

    机器学习基础 - 图书

    导演:Mehryar Mohri
    本书从概率近似正确(PAC)理论出发探讨机器学习的基础理论与典型算法,包括PAC学习框架、VC-维、支持向量机、核方法、在线学习、多分类、排序、回归、降维、强化学习等丰富的内容。此外,附录部分简要回顾了与机器学习密切相关的概率论、凸优化、矩阵以及范数等必要的预备知识。 本书重在介绍典型算法的理论支撑并指出算法在实际应用中的关键点,注重理论细节与证明过程,可作为高等院校机器学习、统计学等课程的教材,或作为相关领域研究人员的参考读物。
    机器学习基础
    搜索《机器学习基础》
    图书

    机器学习的数学 - 图书

    导演:雷明
    内容提要 本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、最小地覆盖机器学习的数学知识。包括微积分,线性代数与矩阵论,最优化方法,概率论,信息论,随机过程,以及图论。本书从机器学习的角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识。 本书内容紧凑,结构清晰,深入浅出,讲解详细。可用作计算机、人工智能、电子工程、自动化、数学等相关专业的教材与教学参考书。对人工智能领域的工程技术人员与产品研发人员,本书也有很强的参考价值。对于广大数学与应用的数学爱好者,本书亦为适合自学的读本。
    机器学习的数学
    搜索《机器学习的数学》
    图书

    机器学习 - 图书

    2016计算机·人工智能
    导演:周志华
    机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2003
    导演:Tom M. Mitchell
    机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从很多学科吸收了成果和概念,包括人工智能、概论论与数理统计、哲学、信息论、生物学、认知科学和控制论等,并以此来理解问题的背景、算法和算法中的隐含假定。 本书展示了机器学习中的核心算法和理论,并阐明了算法的过行过程。书中主要涵盖了目前机器学习中各种最实用的理论和算法,包括概念学习、决策树、神经网络、贝叶斯学习、基于实例的学习、遗传算法、规则学习、基于解释的学习和增强学习等。对每一个主题,作者不仅进行了十分详尽和直观的解释,还给出了实用的算法流程。本书被卡内基梅隆等许多大学作为机器学习课程的教材。机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从...(展开全部)
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    导演:Tom M. Mitchell
    本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。 本书可作为计算机专业 本科生、研究生 教材,也可作为相关领域研究人员、教师的参考书。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2018计算机·人工智能
    导演:赵卫东 董亮
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书内容涵盖了机器学习的基础知识,主要包括机器学习的概论、统计学习基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、进化计算、文本分析等经典的机器学习理论知识,也包括用于大数据机器学习的分布式机器学习算法、深度学习和加强学习等高等级内容。此外,还介绍了机器学习的热门应用领域推荐技术,并给出了华为机器学习平台上的实验。本书深入浅出、内容全面、案例丰富,每章后都有习题和参考文献,便于学生巩固学习,适用于高等院校本科生、研究生机器学习、数据分析、数据挖掘等课程的教材,也可作为对机器学习感兴趣的研究人员和工程技术人员的参考资料。
    机器学习
    搜索《机器学习》
    图书
    加载中...