悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习理论导引 - 图书

    导演:周志华
    机器学习领域著名学者周志华教授领衔的南京大学LAMDA团队四位教授合著 系统梳理机器学习理论中的七大重要概念或理论工具,并给出若干分析实例 机器学习理论内容浩瀚广博,旨在为机器学习理论研究的读者提供入门导引 本书旨在为有志于机器学习理论学习和研究的读者提供一个入门导引。在预备知识之后,全书各章分别聚焦于:可学性、(假设空间)复杂度、泛化界、稳定性、一致性、收敛率、遗憾界。 除介绍基本概念外,还给出若干分析实例,如显示如何将不同理论工具应用于支持向量机这种常见机器学习技术。
    机器学习理论导引
    图书

    机器学习理论导引 - 图书

    导演:周志华
    机器学习领域著名学者周志华教授领衔的南京大学LAMDA团队四位教授合著 系统梳理机器学习理论中的七大重要概念或理论工具,并给出若干分析实例 机器学习理论内容浩瀚广博,旨在为机器学习理论研究的读者提供入门导引 本书旨在为有志于机器学习理论学习和研究的读者提供一个入门导引。在预备知识之后,全书各章分别聚焦于:可学性、(假设空间)复杂度、泛化界、稳定性、一致性、收敛率、遗憾界。 除介绍基本概念外,还给出若干分析实例,如显示如何将不同理论工具应用于支持向量机这种常见机器学习技术。
    机器学习理论导引
    图书

    学习理论 - 图书

    导演:戴尔·H·申克
    《学习理论:教育的视角(第3版)》内容简介:学习领域永远词汇着活力和挑战。这本教科书是1996年出版的《学习理论》的修订本。同第二版相比,新增了若干内容。除主要介绍学习的概念,原理和研究成果,以及这些概念,原理在真实的教学情境中实际应用的例子外,还用一整章的篇幅讨论了发展问题,并丰富了技术在教育教学中应用的部分。这些变化都反映了理论的演变和研究重点的转移。这本教科书第一章中的三个学习实例贯穿了以后的几章节,提供了学生对学习理解的整体观点,还介绍了许多同学习有关的话题,这些知识旨在帮助学生更好地理解学习的过程。此外,学生还将获得有关学习过程发展更多信息的最新资源。
    学习理论
    搜索《学习理论》
    图书

    博弈学习理论 - 图书

    导演:弗登伯格,莱文 著,肖争艳,侯成琪 译
    在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现,传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。   在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随时间的推移寻求最优化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
    博弈学习理论
    搜索《博弈学习理论》
    图书

    博弈学习理论 - 图书

    导演:弗登伯格,莱文 著,肖争艳,侯成琪 译
    在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现,传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。   在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随时间的推移寻求最优化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
    博弈学习理论
    搜索《博弈学习理论》
    图书

    博弈学习理论 - 图书

    2019
    导演:朱·弗登博格
    本书是任何从事学习理论和博弈理论研究或在应用研究中使用演进博弈理论的人的必读书籍。不同于非合作博弈理论中传统的均衡概念所认为的均衡是在博弈的规则和参与人的收益函数都共知的情况下,由理性参与人的分析和自省产生的结果,《博弈学习理论》则认为均衡是并非完全理性的参与人随着时间的推移寻求优化这一过程的长期结果。
    博弈学习理论
    搜索《博弈学习理论》
    图书

    机器学习 - 图书

    2016计算机·人工智能
    导演:周志华
    机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2018计算机·人工智能
    导演:赵卫东 董亮
    机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书内容涵盖了机器学习的基础知识,主要包括机器学习的概论、统计学习基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、进化计算、文本分析等经典的机器学习理论知识,也包括用于大数据机器学习的分布式机器学习算法、深度学习和加强学习等高等级内容。此外,还介绍了机器学习的热门应用领域推荐技术,并给出了华为机器学习平台上的实验。本书深入浅出、内容全面、案例丰富,每章后都有习题和参考文献,便于学生巩固学习,适用于高等院校本科生、研究生机器学习、数据分析、数据挖掘等课程的教材,也可作为对机器学习感兴趣的研究人员和工程技术人员的参考资料。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    导演:Mehryar Mohri
    本书是机器学习领域内一部具有里程碑意义的著作。包括哥伦比亚大学、北京大学在内的多个国内外名校均有以该书为基础开设的研究生课程。全书内容丰富,视野宽阔,深入浅出地介绍了目前机器学习重要的理论和关键的算法。
    机器学习
    搜索《机器学习》
    图书

    机器学习 - 图书

    2003
    导演:Tom M. Mitchell
    机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从很多学科吸收了成果和概念,包括人工智能、概论论与数理统计、哲学、信息论、生物学、认知科学和控制论等,并以此来理解问题的背景、算法和算法中的隐含假定。 本书展示了机器学习中的核心算法和理论,并阐明了算法的过行过程。书中主要涵盖了目前机器学习中各种最实用的理论和算法,包括概念学习、决策树、神经网络、贝叶斯学习、基于实例的学习、遗传算法、规则学习、基于解释的学习和增强学习等。对每一个主题,作者不仅进行了十分详尽和直观的解释,还给出了实用的算法流程。本书被卡内基梅隆等许多大学作为机器学习课程的教材。机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从...(展开全部)
    机器学习
    搜索《机器学习》
    图书
    加载中...