悟空视频
搜索
在线播放
云盘网盘
BT下载
影视
图书
机器学习
的
数学
- 图书
导演:雷明
内容提要 本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、最小地覆盖机器学习的数学知识。包括微积分,线性代数与矩阵论,最优化方法,概率论,信息论,随机过程,以及图论。本书从机器学习的角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识。 本书内容紧凑,结构清晰,深入浅出,讲解详细。可用作计算机、人工智能、电子工程、自动化、数学等相关专业的教材与教学参考书。对人工智能领域的工程技术人员与产品研发人员,本书也有很强的参考价值。对于广大数学与应用的数学爱好者,本书亦为适合自学的读本。
图书
机器学习
的
数学
基础 - 图书
导演:[英]马克·彼得·戴森罗特 [英]A. 阿尔多·费萨尔 [马来西亚]翁承顺
本书弥补了纯数学书籍和机器学习书籍存在的单一性问题,介绍了理解机器学习所需的必备数学概念,例如线性代数、解析几何、矩阵分解、向量微积分、优化、概率和统计,并使用这些概念推导出了四种核心机器学习方法:线性回归、主成分分析、高斯混合模型和支持向量机。本书每一章都包括一些例子,大部分章还配有习题,以方便读者测试对所学知识的理解程度。本书适合数据科学专业和计算机科学专业的学生,以及算法工程师与机器学习领域相关从业者阅读。
搜索《机器学习的数学基础》
图书
白话
机器学习
的
数学
- 图书
2020
科学技术·自然科学
导演:立石贤吾
本书通过正在学习机器学习的程序员绫乃和她朋友美绪的对话,结合回归和分类的具体问题,逐步讲解了机器学习中实用的数学基础知识。其中,重点讲解了容易成为学习绊脚石的数学公式和符号。同时,还通过实际的Python 编程讲解了数学公式的应用,进而加深读者对相关数学知识的理解。
搜索《白话机器学习的数学》
图书
白话
机器学习
的
数学
- 图书
导演:[日]立石贤吾
本书通过正在学习机器学习的程序员绫乃和她朋友美绪的对话,结合回归和分类的具体问题,逐步讲解了机器学习中实用的数学基础知识。其中,重点讲解了容易成为学习绊脚石的数学公式和符号。同时,还通过实际的Python 编程讲解了数学公式的应用,进而加深读者对相关数学知识的理解。
搜索《白话机器学习的数学》
图书
白话
机器学习
的
数学
- 图书
2020
科学技术·自然科学
导演:立石贤吾
本书通过正在学习机器学习的程序员绫乃和她朋友美绪的对话,结合回归和分类的具体问题,逐步讲解了机器学习中实用的数学基础知识。其中,重点讲解了容易成为学习绊脚石的数学公式和符号。同时,还通过实际的Python 编程讲解了数学公式的应用,进而加深读者对相关数学知识的理解。
搜索《白话机器学习的数学》
图书
机器学习
数学
基础 - 图书
2022
计算机·人工智能
导演:齐伟
本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
搜索《机器学习数学基础》
图书
机器学习
数学
基础 - 图书
2022
计算机·人工智能
导演:齐伟
本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
搜索《机器学习数学基础》
图书
机器学习
- 图书
2016
计算机·人工智能
导演:周志华
机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
搜索《机器学习》
图书
机器学习
- 图书
2003
导演:Tom M. Mitchell
机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从很多学科吸收了成果和概念,包括人工智能、概论论与数理统计、哲学、信息论、生物学、认知科学和控制论等,并以此来理解问题的背景、算法和算法中的隐含假定。 本书展示了机器学习中的核心算法和理论,并阐明了算法的过行过程。书中主要涵盖了目前机器学习中各种最实用的理论和算法,包括概念学习、决策树、神经网络、贝叶斯学习、基于实例的学习、遗传算法、规则学习、基于解释的学习和增强学习等。对每一个主题,作者不仅进行了十分详尽和直观的解释,还给出了实用的算法流程。本书被卡内基梅隆等许多大学作为机器学习课程的教材。机器学习这门学科研究的是能通过经验自动改进的计算机算法,其应用从数据挖掘程序到信息过滤系统,再到自动机工具,已经非常丰富。机器学习从...(展开全部)
搜索《机器学习》
图书
机器学习
- 图书
导演:Tom M. Mitchell
本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。 本书可作为计算机专业 本科生、研究生 教材,也可作为相关领域研究人员、教师的参考书。
搜索《机器学习》
图书
加载中...