悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习算法的数学解析与Python实现 - 图书

    2020计算机·人工智能
    导演:莫凡
    学习机器学习的动机很多,可能是实际工作需要,可能是兴趣爱好,也可能是学业要求,从每种动机的角度看,这个问题都可能有不同的答案。我认同许多人所说的求知不能太功利这一观点,不过大家的时间和精力毕竟有限,就算不去追求投入产出比,至少也应该有一个学这门知识想要达到的目的。机器学习是更偏重于应用的学问,在当下的发展也确实使得机器学习越来越像一门技能,而不仅仅是技术。初学算法时我最想学的是里面的“最强算法”,不过在第1章我将介绍,机器学习算法没有最强的,只有最合适的,对于不同的问题,对应会有不同的最合适算法。所以,我们更需要关注的应该是问题,而不是算法本身。在本书中我选择介绍市面上成熟的机器学习算法包,通过现成的算法包,就能够根据实际要解决的问题直接选择所需要的机器学习算法,从而把注意力集中在对不同算法的选择上。本书的目标读者是想要学习机器学习的学生、程序员、研究人员或者爱好者,以及想要知道机器学习是什么、为什么和怎么用的所有读者。本书第1章介绍机器学习总体背景,第2章介绍配置环境,第3章到第10章彼此独立,每一章介绍一种具体的机器学习算法,读者可以直接阅读想要了解的算法,第11章介绍了集成学习方法,这是一种组合机器学习算法的方法,也是当前在实际使用中常见又十分有效的提升性能的做法。
    机器学习算法的数学解析与Python实现
    图书

    Python机器学习原理与算法实现 - 图书

    2023计算机·计算机综合
    导演:杨维忠 张甜
    数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的必备技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“机器学习课程学习”有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯算法、高维数据惩罚回归算法、K近邻算法;第11、12章介绍主成分分析算法、聚类分析算法两种非监督式学习算法;第13~15章介绍相对复杂的监督式学习算法,包括决策树算法和随机森林算法、提升法两种集成学习算法;第16、17章介绍支持向量机算法、神经网络算法两种高级监督式学习算法。 本书可以作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python或机器学习应用的专业教材、参考书;也可以作为企事业单位数字化人才培养的教科书、工具书,还可以作为职场人士自学掌握Python机器学习应用、提升数据挖掘分析能力进而提高工作效能和改善绩效水平的工具书。
    Python机器学习原理与算法实现
    搜索《Python机器学习原理与算法实现》
    图书

    Python机器学习原理与算法实现 - 图书

    2023计算机·计算机综合
    导演:杨维忠 张甜
    数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的必备技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“机器学习课程学习”有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯算法、高维数据惩罚回归算法、K近邻算法;第11、12章介绍主成分分析算法、聚类分析算法两种非监督式学习算法;第13~15章介绍相对复杂的监督式学习算法,包括决策树算法和随机森林算法、提升法两种集成学习算法;第16、17章介绍支持向量机算法、神经网络算法两种高级监督式学习算法。 本书可以作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python或机器学习应用的专业教材、参考书;也可以作为企事业单位数字化人才培养的教科书、工具书,还可以作为职场人士自学掌握Python机器学习应用、提升数据挖掘分析能力进而提高工作效能和改善绩效水平的工具书。
    Python机器学习原理与算法实现
    搜索《Python机器学习原理与算法实现》
    图书

    Python机器学习算法: 原理、实现与案例 - 图书

    2019计算机·编程设计
    导演:刘硕
    本书用平实的语言深入浅出地介绍当前热门的机器学习经典算法,包括线性回归、Logistic回归与Softmax回归、决策树(分类与回归)、朴素贝叶斯、支持向量机、K近邻学习、K-Means和人工神经网络,针对每一个算法首先介绍数学模型及原理,然后根据模型和算法描述使用Python编程和Numpy库进行算法实现,最后通过案例让读者进一步体会算法的应用场景以及应用时所需注意的问题。本书适合准备进入人工智能和数据分析与挖掘领域的初学者,对机器学习算法感兴趣的爱好者、程序员、大学生和各类IT培训班的学员使用。
    Python机器学习算法: 原理、实现与案例
    搜索《Python机器学习算法: 原理、实现与案例》
    图书

    Python机器学习算法: 原理、实现与案例 - 图书

    2019计算机·编程设计
    导演:刘硕
    本书用平实的语言深入浅出地介绍当前热门的机器学习经典算法,包括线性回归、Logistic回归与Softmax回归、决策树(分类与回归)、朴素贝叶斯、支持向量机、K近邻学习、K-Means和人工神经网络,针对每一个算法首先介绍数学模型及原理,然后根据模型和算法描述使用Python编程和Numpy库进行算法实现,最后通过案例让读者进一步体会算法的应用场景以及应用时所需注意的问题。本书适合准备进入人工智能和数据分析与挖掘领域的初学者,对机器学习算法感兴趣的爱好者、程序员、大学生和各类IT培训班的学员使用。
    Python机器学习算法: 原理、实现与案例
    搜索《Python机器学习算法: 原理、实现与案例》
    图书

    Python机器学习算法与实战 - 图书

    2021计算机·编程设计
    导演:孙玉林 余本国
    本书基于Python语言,结合实际的数据集,介绍如何使用机器学习与深度学习算法,对数据进行实战分析。本书在内容上循序渐进,先介绍了Python的基础内容,以及如何利用Python中的第三方库对数据进行预处理和探索可视化的相关操作,然后结合实际数据集,分章节介绍了机器学习与深度学习的相关算法应用。本书为读者提供了源程序和使用的数据集,方便读者在阅读时同步运行程序,在增强学习效果的同时为读者节省了编写程序的时间。源程序使用Notebook的形式进行组织,每个小节注释清晰,讲解透彻。同时为程序配备了相应的视频讲解,辅助读者对程序能很好地理解和消化。本书在简明扼要地介绍算法原理的同时,更加注重实战应用和对结果的解读。
    Python机器学习算法与实战
    搜索《Python机器学习算法与实战》
    图书

    机器学习算法 - 图书

    2020科学技术·工业技术
    导演:朱塞佩·博纳科尔索
    本书介绍了数据科学领域常用的所有重要机器学习算法以及TensorFlow和特征工程等相关内容。涵盖的算法包括线性回归、逻辑回归、支持向量机、朴素贝叶斯、k均值、随机森林等,这些算法可以用于监督学习、非监督学习、强化学习或半监督学习。 在本书中,你将学会如何使用这些算法来解决所遇到的问题,并了解这些算法的工作方式。本书还将介绍自然语言处理和推荐系统,这些内容将帮助大家进行多种算法的实践。
    机器学习算法
    搜索《机器学习算法》
    图书

    Python机器学习 - 图书

    2021计算机·编程设计
    导演:塞巴斯蒂安·拉施卡 瓦希德·米尔贾利利
    本书自第1版出版以来,备受广大读者欢迎。第3版结合TensorFlow 2和scikit-learn的最新版本进行了更新,其范围进行了扩展,以涵盖强化学习和生成对抗网络(GAN)这两种最先进的机器学习技术。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还讨论了机器学习概念的必要细节,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供了直观且翔实的解释,是Python机器学习入门必读之作。书中涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,可帮助读者快速解决自己和团队面临的一些重要问题。本书适用于机器学习的初学者和专业技术人员。
    Python机器学习
    搜索《Python机器学习》
    图书

    Python机器学习 - 图书

    导演:[美]塞巴斯蒂安·拉施卡
    适读人群: 想进入机器学习领域的初学者; 计算机及相关专业的学生; 想要向机器学习工程师、数据科学家转型的非开发岗人员; 使用过机器学习技术,但想要更加深入了解其工作原理的人员; 其他对机器学习、人工智能有兴趣的自学者 本书是使用Python进行机器学习和深度学习的全面指南。它既可以用作清晰的分步教程,也可以作为构建机器学习系统时常用的参考手册。本书包含清晰的解释、图表和工作示例,全面深入地介绍了机器学习的基本技术,并且给出了机器学习背后的原理,使你可以自己建立模型和应用程序。第3版结合TensorFlow 2和scikit-learn的新版本进行了更新,涵盖强化学习和生成对抗网络(GAN)这两种先进的机器学习技术。 机器学习将改变你解决问题的思路,并让你看到如何释放数据的力量来解决问题。无论你是Python机器学习的初学者还是想加深自己对前沿发展的...(展开全部)
    Python机器学习
    搜索《Python机器学习》
    图书

    python机器学习 - 图书

    导演:Sebastian Raschka
    Sebastian Raschka是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客Analytics Vidhya评为GitHub上具影响力的数据科学家。他有一整年都使用Python进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为Sebastian 在数据科学、机器学习以及Python等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。 他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如Kaggle等)中。在业余时间,他沉醉于构建体育运动的预测模型,要么待在电脑前,要么在运动。
    python机器学习
    搜索《python机器学习》
    图书
    加载中...