悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习:从公理到算法 - 图书

    2017计算机·理论知识
    导演:于剑
    这是一本基于公理研究学习算法的书。共17章,由两部分组成。第一部分是机器学习公理以及部分理论演绎,包括第1、2、6、8章,论述学习公理以及相应的聚类、分类理论。第二部分关注如何从公理推出经典学习算法,包括单类、多类和多源问题。第3~5章为单类问题,分别论述密度估计、回归和单类数据降维。第7、9~16章为多类问题,包括聚类、神经网络、K近邻、支持向量机、Logistic回归、贝叶斯分类、决策树、多类降维与升维等经典算法。最后第17章研究了多源数据学习问题。本书可以作为高等院校计算机、自动化、数学、统计学、人工智能及相关专业的研究生教材,也可以供机器学习的爱好者参考。
    机器学习:从公理到算法
    图书

    机器学习:从公理到算法 - 图书

    2017计算机·理论知识
    导演:于剑
    这是一本基于公理研究学习算法的书。共17章,由两部分组成。第一部分是机器学习公理以及部分理论演绎,包括第1、2、6、8章,论述学习公理以及相应的聚类、分类理论。第二部分关注如何从公理推出经典学习算法,包括单类、多类和多源问题。第3~5章为单类问题,分别论述密度估计、回归和单类数据降维。第7、9~16章为多类问题,包括聚类、神经网络、K近邻、支持向量机、Logistic回归、贝叶斯分类、决策树、多类降维与升维等经典算法。最后第17章研究了多源数据学习问题。本书可以作为高等院校计算机、自动化、数学、统计学、人工智能及相关专业的研究生教材,也可以供机器学习的爱好者参考。
    机器学习:从公理到算法
    图书

    机器学习算法 - 图书

    2020科学技术·工业技术
    导演:朱塞佩·博纳科尔索
    本书介绍了数据科学领域常用的所有重要机器学习算法以及TensorFlow和特征工程等相关内容。涵盖的算法包括线性回归、逻辑回归、支持向量机、朴素贝叶斯、k均值、随机森林等,这些算法可以用于监督学习、非监督学习、强化学习或半监督学习。 在本书中,你将学会如何使用这些算法来解决所遇到的问题,并了解这些算法的工作方式。本书还将介绍自然语言处理和推荐系统,这些内容将帮助大家进行多种算法的实践。
    机器学习算法
    搜索《机器学习算法》
    图书

    深入理解机器学习:从原理到算法: 从原理到算法 - 图书

    导演:Shai Shalev Shwartz
    本书涵盖了机器学习领域中的严谨理论和实用方法,讨论了学习的计算复杂度、凸性和稳定性、PAC-贝叶斯方法、压缩界等概念,并介绍了一些重要的算法范式,包括随机梯度下降、神经元网络以及结构化输出。 全书讲解全面透彻,适合有一定基础的高年级本科生和研究生学习,也适合作为IT行业从事数据分析和挖掘的专业人员以及研究人员参考阅读。
    深入理解机器学习:从原理到算法: 从原理到算法
    搜索《深入理解机器学习:从原理到算法: 从原理到算法》
    图书

    深入理解机器学习:从原理到算法: 从原理到算法 - 图书

    导演:Shai Shalev Shwartz
    本书涵盖了机器学习领域中的严谨理论和实用方法,讨论了学习的计算复杂度、凸性和稳定性、PAC-贝叶斯方法、压缩界等概念,并介绍了一些重要的算法范式,包括随机梯度下降、神经元网络以及结构化输出。 全书讲解全面透彻,适合有一定基础的高年级本科生和研究生学习,也适合作为IT行业从事数据分析和挖掘的专业人员以及研究人员参考阅读。
    深入理解机器学习:从原理到算法: 从原理到算法
    搜索《深入理解机器学习:从原理到算法: 从原理到算法》
    图书

    机器学习算法实践 - 图书

    2018
    导演:王建芳
    个性化推荐能够根据用户的历史行为显式或者隐式地挖掘用户潜在的兴趣和需求,并为其推送个性化信息,因此受到研究者的追捧及工业界的青睐,其研究具有重大的学术价值及商业应用价值,已广泛应用于大型电子商务平台、社交平台、新闻客户端以及其他各类旅游和娱乐类网站中。 本书内容丰富,较全面地介绍了基于协同过滤的推荐系统存在的问题、解决方法和评估策略,主要内容涉及协同过滤推荐算法中的时序技术、矩阵分解技术和社交网络信任技术等知识。 本书可供从事推荐系统、人工智能、机器学习、模式识别和信息检索等领域的科研人员及研究生阅读、参考。
    机器学习算法实践
    搜索《机器学习算法实践》
    图书

    图解机器学习算法 - 图书

    2021计算机·数据库
    导演:秋庭伸也 杉山阿圣 寺田学
    本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从而加深对算法的理解。
    图解机器学习算法
    搜索《图解机器学习算法》
    图书

    图解机器学习算法 - 图书

    2021计算机·数据库
    导演:秋庭伸也 杉山阿圣 寺田学
    本书基于丰富的图示,详细介绍了有监督学习和无监督学习的17种算法,包括线性回归、正则化、逻辑回归、支持向量机、核方法、朴素贝叶斯、随机森林、神经网络、KNN、PCA、LSA、NMF、LDA、k-means算法、混合高斯分布、LLE和t-SNE。书中针对各算法均用Python代码进行了实现,读者可一边运行代码一边阅读,从而加深对算法的理解。
    图解机器学习算法
    搜索《图解机器学习算法》
    图书

    突围算法:机器学习算法应用 - 图书

    2020计算机·理论知识
    导演:刘凡平
    本书主要对算法的原理进行了介绍,并融合大量的应用案例,详细介绍使用机器学习模型的一般方法,帮助读者理解算法原理,学会模型设计。 本书首先介绍数据理解、数据的处理与特征,帮助读者认识数据;然后从宏观、系统的角度介绍机器学习算法分类、一般学习规则及机器学习的基础应用;接着根据项目研发的流程,详细介绍了模型选择和结构设计、目标函数设计、模型训练过程设计、模型效果的评估与验证、计算性能与模型加速;最后通过多个应用案例帮助读者加强对前面知识点的理解。
    突围算法:机器学习算法应用
    搜索《突围算法:机器学习算法应用》
    图书

    机器学习算法评估实战 - 图书

    2021计算机·人工智能
    导演:宋亚统
    机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。 本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9章~第11章,总结算法评估的常用工具、技术及方法论,包括实用的可视化工具介绍,并讨论机器学习算法的本质。本书适合机器学习专业相关从业者和算法工程师阅读,也适合想要从事人工智能和机器学习工作的人士学习和参考。
    机器学习算法评估实战
    搜索《机器学习算法评估实战》
    图书
    加载中...