悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习:公式推导与代码实现 - 图书

    2022计算机·人工智能
    导演:鲁伟编著
    作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。
    机器学习:公式推导与代码实现
    图书

    机器学习:公式推导与代码实现 - 图书

    2022计算机·人工智能
    导演:鲁伟编著
    作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。
    机器学习:公式推导与代码实现
    图书

    机器学习公式详解 - 图书

    导演:谢文睿
    周志华老师的《机器学习》(俗称“西瓜书”)是机器学习领域的经典入门教材之一。本书(俗称“南瓜书”)基于Datawhale 成员自学“西瓜书”时记下的笔记编著而成,旨在对“西瓜书”中重难点公式加以解析,以及对部分公式补充具体的推导细节。 全书共16 章,与“西瓜书”章节、公式对应,每个公式的推导和解析都以本科数学基础的视角进行讲解,希望能够帮助读者达到“理工科数学基础扎实点的大二下学期学生”水平。每章都附有相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
    机器学习公式详解
    搜索《机器学习公式详解》
    图书

    机器视觉与机器学习:算法原理、框架应用与代码实现 - 图书

    2020计算机·软件学习
    导演:宋丽梅 朱新军编著
    《机器视觉与机器学习——算法原理、框架应用与代码实现》内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为Shape from X;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、Intel RealSense等深度相机的知识与相关应用;第9章为机器学习基础;第10章为机器学习在机器视觉领域的应用,包括机器学习在模式识别、图像超分辨率重建、图像去噪、目标跟踪、三维重建等方面的应用。
    机器视觉与机器学习:算法原理、框架应用与代码实现
    搜索《机器视觉与机器学习:算法原理、框架应用与代码实现》
    图书

    深度学习全书——公式+推导+代码+TensorFlow全程案例 - 图书

    2022计算机·人工智能
    导演:洪锦魁
    《深度学习全书——公式+推导+代码+TensorFlow全程案例》共有15章,分为5部分,第一篇说明深度学习的概念,包括数理基础,特点是结合编程解题,加深读者印象,第二篇说明TensorFlow的学习地图,从张量、自动微分、梯度下降乃至神经层的实践,逐步解构神经网络,第三篇介绍CNN算法、影像应用、转移学习等,第四篇则进入自然语言处理及语音识别的领域,介绍RNN/BERT/Transformer算法、相关应用等,最后,介绍了强化学习的基础知识,包括马尔可夫决策过程、动态规划、蒙特卡洛、Q Learning算法,当然,还有相关案例实践。
    深度学习全书——公式+推导+代码+TensorFlow全程案例
    搜索《深度学习全书——公式+推导+代码+TensorFlow全程案例》
    图书

    Python机器学习原理与算法实现 - 图书

    2023计算机·计算机综合
    导演:杨维忠 张甜
    数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的必备技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“机器学习课程学习”有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯算法、高维数据惩罚回归算法、K近邻算法;第11、12章介绍主成分分析算法、聚类分析算法两种非监督式学习算法;第13~15章介绍相对复杂的监督式学习算法,包括决策树算法和随机森林算法、提升法两种集成学习算法;第16、17章介绍支持向量机算法、神经网络算法两种高级监督式学习算法。 本书可以作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python或机器学习应用的专业教材、参考书;也可以作为企事业单位数字化人才培养的教科书、工具书,还可以作为职场人士自学掌握Python机器学习应用、提升数据挖掘分析能力进而提高工作效能和改善绩效水平的工具书。
    Python机器学习原理与算法实现
    搜索《Python机器学习原理与算法实现》
    图书

    Python机器学习原理与算法实现 - 图书

    2023计算机·计算机综合
    导演:杨维忠 张甜
    数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的必备技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“机器学习课程学习”有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯算法、高维数据惩罚回归算法、K近邻算法;第11、12章介绍主成分分析算法、聚类分析算法两种非监督式学习算法;第13~15章介绍相对复杂的监督式学习算法,包括决策树算法和随机森林算法、提升法两种集成学习算法;第16、17章介绍支持向量机算法、神经网络算法两种高级监督式学习算法。 本书可以作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python或机器学习应用的专业教材、参考书;也可以作为企事业单位数字化人才培养的教科书、工具书,还可以作为职场人士自学掌握Python机器学习应用、提升数据挖掘分析能力进而提高工作效能和改善绩效水平的工具书。
    Python机器学习原理与算法实现
    搜索《Python机器学习原理与算法实现》
    图书

    机器学习与深度学习 - 图书

    2022计算机·编程设计
    导演:王衡军
    本书以任务为导向,讨论了机器学习和深度学习的主要问题,包括聚类、回归、分类、标注、降维、特征工程、超参数调优、序列决策(强化学习)和对抗攻击等。书中对上述每个问题,分别从决策函数类模型、概率类模型和神经网络类模型三个角度来讨论具体的实现算法。本书在内容上兼顾基础知识和应用实践。总体上,以基本理论知识为主线,逐步展开,从概念入手,逐步讨论算法思想,着重考虑知识的关联性,最后落实到机器学习扩展库和深度学习框架的具体应用。具体到每个模型,采用以示例入手、逐渐深入的方式,尽量给出详尽的分析或推导。本书的特点是主要通过示例来讨论相关模型,适合初学者入门使用。本书示例代码采用Python3程序设计语言编写。传统机器学习算法的应用示例主要以ScikitLearn机器学习扩展库来实现,隐马尔可夫模型示例用hmmlearn扩展库来实现,条件随机场模型示例用CRF++工具来实现。深度学习算法的示例采用TensorFlow2框架和MindSpore框架来实现。
    机器学习与深度学习
    搜索《机器学习与深度学习》
    图书

    机器学习系统:设计和实现 - 图书

    2023科学技术·工业技术
    导演:麦络 董豪
    本书系统地介绍了机器学习系统的设计原则和实践经验,侧重于介绍机器学习的原理、神经网络和优化器、自动差分算法、机器学习系统编程模型、控制流和数据流,异构硬件加速器的原理和编程、数据流图编译器前端、数据流图编译器后端、数据准备和增强、模型部署相关技术、分布式训练、弹性训练、联合训练和评估平台、调试和优化工具、数据隐私和安全等。在讲授的过程中,本书将根据MindSpore的自身特点,在各个章节突出讨论MindSpore的优势点,从而将MindSpore并列为与TensorFlow,PyTorch的三大框架。
    机器学习系统:设计和实现
    搜索《机器学习系统:设计和实现》
    图书

    Python机器学习算法: 原理、实现与案例 - 图书

    2019计算机·编程设计
    导演:刘硕
    本书用平实的语言深入浅出地介绍当前热门的机器学习经典算法,包括线性回归、Logistic回归与Softmax回归、决策树(分类与回归)、朴素贝叶斯、支持向量机、K近邻学习、K-Means和人工神经网络,针对每一个算法首先介绍数学模型及原理,然后根据模型和算法描述使用Python编程和Numpy库进行算法实现,最后通过案例让读者进一步体会算法的应用场景以及应用时所需注意的问题。本书适合准备进入人工智能和数据分析与挖掘领域的初学者,对机器学习算法感兴趣的爱好者、程序员、大学生和各类IT培训班的学员使用。
    Python机器学习算法: 原理、实现与案例
    搜索《Python机器学习算法: 原理、实现与案例》
    图书
    加载中...