悟空视频

    在线播放云盘网盘BT下载影视图书

    机器视觉与机器学习:算法原理、框架应用与代码实现 - 图书

    2020计算机·软件学习
    导演:宋丽梅 朱新军编著
    《机器视觉与机器学习——算法原理、框架应用与代码实现》内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为Shape from X;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、Intel RealSense等深度相机的知识与相关应用;第9章为机器学习基础;第10章为机器学习在机器视觉领域的应用,包括机器学习在模式识别、图像超分辨率重建、图像去噪、目标跟踪、三维重建等方面的应用。
    机器视觉与机器学习:算法原理、框架应用与代码实现
    图书

    机器视觉算法与应用 - 图书

    2008
    导演:Carsten Steger
    《机器视觉算法与应用(双语版)》是一本关于机器视觉算法与应用的中英文对照版教材。是第一本有关机器视觉软件的教材,详细介绍了机器视觉的各种算法,以及有关这些算法的实际应用。《机器视觉算法与应用》(双语版)的三位作者在MVTec公司负责著名机器视觉算法软件包HALCON的研发工作,同时还在幕尼黑工业大学(TUM)担任客座学者从事机器视觉研究教学工作,具备深厚的理论功底和实战经验。作者在《机器视觉算法与应用(双语版)》中将自己十几年来积累下来的“实战”经验无保留地分享给大家。
    机器视觉算法与应用
    搜索《机器视觉算法与应用》
    图书

    Python机器学习原理与算法实现 - 图书

    2023计算机·计算机综合
    导演:杨维忠 张甜
    数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的必备技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“机器学习课程学习”有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯算法、高维数据惩罚回归算法、K近邻算法;第11、12章介绍主成分分析算法、聚类分析算法两种非监督式学习算法;第13~15章介绍相对复杂的监督式学习算法,包括决策树算法和随机森林算法、提升法两种集成学习算法;第16、17章介绍支持向量机算法、神经网络算法两种高级监督式学习算法。 本书可以作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python或机器学习应用的专业教材、参考书;也可以作为企事业单位数字化人才培养的教科书、工具书,还可以作为职场人士自学掌握Python机器学习应用、提升数据挖掘分析能力进而提高工作效能和改善绩效水平的工具书。
    Python机器学习原理与算法实现
    搜索《Python机器学习原理与算法实现》
    图书

    Python机器学习原理与算法实现 - 图书

    2023计算机·计算机综合
    导演:杨维忠 张甜
    数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的必备技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“机器学习课程学习”有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯算法、高维数据惩罚回归算法、K近邻算法;第11、12章介绍主成分分析算法、聚类分析算法两种非监督式学习算法;第13~15章介绍相对复杂的监督式学习算法,包括决策树算法和随机森林算法、提升法两种集成学习算法;第16、17章介绍支持向量机算法、神经网络算法两种高级监督式学习算法。 本书可以作为经济学、管理学、统计学、金融学、社会学、医学、电子商务等相关专业的学生学习Python或机器学习应用的专业教材、参考书;也可以作为企事业单位数字化人才培养的教科书、工具书,还可以作为职场人士自学掌握Python机器学习应用、提升数据挖掘分析能力进而提高工作效能和改善绩效水平的工具书。
    Python机器学习原理与算法实现
    搜索《Python机器学习原理与算法实现》
    图书

    Python机器学习算法: 原理、实现与案例 - 图书

    2019计算机·编程设计
    导演:刘硕
    本书用平实的语言深入浅出地介绍当前热门的机器学习经典算法,包括线性回归、Logistic回归与Softmax回归、决策树(分类与回归)、朴素贝叶斯、支持向量机、K近邻学习、K-Means和人工神经网络,针对每一个算法首先介绍数学模型及原理,然后根据模型和算法描述使用Python编程和Numpy库进行算法实现,最后通过案例让读者进一步体会算法的应用场景以及应用时所需注意的问题。本书适合准备进入人工智能和数据分析与挖掘领域的初学者,对机器学习算法感兴趣的爱好者、程序员、大学生和各类IT培训班的学员使用。
    Python机器学习算法: 原理、实现与案例
    搜索《Python机器学习算法: 原理、实现与案例》
    图书

    Python机器学习算法: 原理、实现与案例 - 图书

    2019计算机·编程设计
    导演:刘硕
    本书用平实的语言深入浅出地介绍当前热门的机器学习经典算法,包括线性回归、Logistic回归与Softmax回归、决策树(分类与回归)、朴素贝叶斯、支持向量机、K近邻学习、K-Means和人工神经网络,针对每一个算法首先介绍数学模型及原理,然后根据模型和算法描述使用Python编程和Numpy库进行算法实现,最后通过案例让读者进一步体会算法的应用场景以及应用时所需注意的问题。本书适合准备进入人工智能和数据分析与挖掘领域的初学者,对机器学习算法感兴趣的爱好者、程序员、大学生和各类IT培训班的学员使用。
    Python机器学习算法: 原理、实现与案例
    搜索《Python机器学习算法: 原理、实现与案例》
    图书

    机器学习:公式推导与代码实现 - 图书

    2022计算机·人工智能
    导演:鲁伟编著
    作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。
    机器学习:公式推导与代码实现
    搜索《机器学习:公式推导与代码实现》
    图书

    机器学习:公式推导与代码实现 - 图书

    2022计算机·人工智能
    导演:鲁伟编著
    作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。
    机器学习:公式推导与代码实现
    搜索《机器学习:公式推导与代码实现》
    图书

    机器学习算法原理与编程实践 - 图书

    2015科学技术·工业技术
    导演:郑捷
    本书是机器学习原理和算法编码实现的基础性读物,内容分为两大主线:单个算法的原理讲解和机器学习理论的发展变迁。算法除包含传统的分类、聚类、预测等常用算法之外,还新增了深度学习、贝叶斯网、隐马尔科夫模型等内容。对于每个算法,均包括提出问题、解决策略、数学推导、编码实现、结果评估几部分。数学推导力图做到由浅入深,深入浅出。结构上数学原理与程序代码一一对照,有助于降低学习门槛,加深公式的理解,起到推广和扩大机器学习的作用。
    机器学习算法原理与编程实践
    搜索《机器学习算法原理与编程实践》
    图书

    机器视觉: 理论、算法与实践 - 图书

    导演:E.R.Davies
    《机器视觉理论、算法与实践(英文版·第3版)》是机器视觉课程的理想教材,作者清晰、系统地阐述了机器视觉的基本概念,介绍理论的基本元素的同时强调算法和实用设计的约束。书中阐述各个主题时,既阐述了基本算法,又介绍了数学工具。此外,《机器视觉理论、算法与实践(英文版·第3版)》还使用案例演示具体技术的应用,并阐明设计现实机器视觉系统的关键约束。 《机器视觉理论、算法与实践(英文版·第3版)》适合作为高等院校计算机及电子工程相关专业研究生的教材,更是从事机器视觉、计算机视觉和机器人领域研究的人员不可多得的技术参考书。
    机器视觉: 理论、算法与实践
    搜索《机器视觉: 理论、算法与实践》
    图书
    加载中...