悟空视频

    在线播放云盘网盘BT下载影视图书

    深度学习与目标检测 - 图书

    2022计算机·理论知识
    导演:杜鹏 等
    本书的写作初衷是,从学者的角度,用一种通俗易懂的方式,将基于深度学习的目标检测的相关论文中的理论和方法呈现给读者,同时针对作者在深度学习教学过程中遇到的难点,进行深入的分析和讲解。 本书侧重对卷积神经网络的介绍,而深度学习的内容不止于此。所以,作者将深度学习分为有监督学习、无监督学习和强化学习三类,将图像分类、目标检测、人脸识别、语音识别、生成对抗网络和AlphaGo等应用场景归入不同的类别,并分别对其原理进行了概括性的讲解。
    深度学习与目标检测
    图书

    深度学习与目标检测:工具、原理与算法 - 图书

    2021计算机·人工智能
    导演:涂铭 金智勇
    随着深度学习技术的发展、计算能力的提升和视觉数据的增加,计算机视觉技术在图像搜索、智能相册、人脸闸机、城市智能交通管理、智慧医疗等诸多领域都取得了令人瞩目的成绩。越来越多的人开始关注这个领域。计算机视觉包含多个分支,其中图像分类、目标检测、图像分割、目标跟踪等是计算机视觉领域最重要的几个研究课题。本书介绍的目标检测技术,本质上就是通过计算机运行特定的算法,检测图像中一些受关注的目标。当今时代,我们很容易在互联网上找到目标检测算法的开源代码,运行代码并不是什么难事,但理解其中的原理却有一定的难度。我们编写本书的目的就是由浅入深地向读者讲解目标检测技术,用相对通俗的语言来介绍算法的背景和原理,在读者“似懂非懂”时给出实战案例。实战案例的代码已全部通过线下验证,代码并不复杂,可以很好地帮助读者理解算法细节,希望读者在学习理论之后可以亲自动手实践。目标检测的理论和实践是相辅相成的,希望本书可以带领读者走进目标检测的世界。
    深度学习与目标检测:工具、原理与算法
    搜索《深度学习与目标检测:工具、原理与算法》
    图书

    深度学习之图像目标检测与识别方法 - 图书

    2024计算机·图像视频
    导演:史朋飞 等
    本书介绍了深度学习在图像目标检测与识别领域的应用,主要包括基于UNet的图像去雾算法、基于特征融合GAN的图像增强算法、基于ESRGAN的图像超分辨率重建算法、基于嵌套UNet的图像分割算法、基于对抗迁移学习的水下大坝裂缝图像分割算法、基于改进Faster-RCNN的海洋生物检测算法、基于YOLOv4的目标检测算法、基于RetinaNet的密集目标检测算法、基于LSTM网络的视频图像目标实时检测、基于改进YOLOv4的嵌入式变电站仪表检测算法等。
    深度学习之图像目标检测与识别方法
    搜索《深度学习之图像目标检测与识别方法》
    图书

    深度学习之图像目标检测与识别方法 - 图书

    2024计算机·图像视频
    导演:史朋飞 等
    本书介绍了深度学习在图像目标检测与识别领域的应用,主要包括基于UNet的图像去雾算法、基于特征融合GAN的图像增强算法、基于ESRGAN的图像超分辨率重建算法、基于嵌套UNet的图像分割算法、基于对抗迁移学习的水下大坝裂缝图像分割算法、基于改进Faster-RCNN的海洋生物检测算法、基于YOLOv4的目标检测算法、基于RetinaNet的密集目标检测算法、基于LSTM网络的视频图像目标实时检测、基于改进YOLOv4的嵌入式变电站仪表检测算法等。
    深度学习之图像目标检测与识别方法
    搜索《深度学习之图像目标检测与识别方法》
    图书

    YOLO目标检测 - 图书

    2023计算机·理论知识
    导演:杨建华 李瑞峰
    本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架——YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
    YOLO目标检测
    搜索《YOLO目标检测》
    图书

    PyTorch计算机视觉实战:目标检测、图像处理与深度学习 - 图书

    2023计算机·软件学习
    导演:V·基肖尔·阿耶德瓦拉 耶什万斯·雷迪
    本书基于真实数据集,全面系统地阐述现代计算机视觉实用技术、方法和实践,涵盖50多个计算机视觉问题。全书分为四部分:di一部分(第1~3章)介绍神经网络和PyTorch的基础知识,以及如何使用PyTorch构建并训练神经网络,包括输入数据缩放、批归一化、超参数调整等;第二部分(第4~10章)介绍如何使用卷积神经网络、迁移学习等技术解决更复杂的视觉相关问题,包括图像分类、目标检测和图像分割等;第三部分(第11~13章)介绍各种图像处理技术,包括自编码器模型和各种类型的GAN模型;第四部分(第14~18章)探讨将计算机视觉技术与NLP、强化学习和OpenCV等技术相结合来解决传统问题的新方法。本书内容丰富新颖,语言文字表述清晰,应用实例讲解详细,图例直观形象,适合PyTorch初中级读者及计算机视觉相关技术人员阅读。
    PyTorch计算机视觉实战:目标检测、图像处理与深度学习
    搜索《PyTorch计算机视觉实战:目标检测、图像处理与深度学习》
    图书

    PyTorch计算机视觉实战:目标检测、图像处理与深度学习 - 图书

    2023计算机·软件学习
    导演:V·基肖尔·阿耶德瓦拉 耶什万斯·雷迪
    本书基于真实数据集,全面系统地阐述现代计算机视觉实用技术、方法和实践,涵盖50多个计算机视觉问题。全书分为四部分:di一部分(第1~3章)介绍神经网络和PyTorch的基础知识,以及如何使用PyTorch构建并训练神经网络,包括输入数据缩放、批归一化、超参数调整等;第二部分(第4~10章)介绍如何使用卷积神经网络、迁移学习等技术解决更复杂的视觉相关问题,包括图像分类、目标检测和图像分割等;第三部分(第11~13章)介绍各种图像处理技术,包括自编码器模型和各种类型的GAN模型;第四部分(第14~18章)探讨将计算机视觉技术与NLP、强化学习和OpenCV等技术相结合来解决传统问题的新方法。本书内容丰富新颖,语言文字表述清晰,应用实例讲解详细,图例直观形象,适合PyTorch初中级读者及计算机视觉相关技术人员阅读。
    PyTorch计算机视觉实战:目标检测、图像处理与深度学习
    搜索《PyTorch计算机视觉实战:目标检测、图像处理与深度学习》
    图书

    深度学习与深度合成 - 图书

    2021计算机·人工智能
    导演:吴剑
    以深度学习为代表的人工智能技术正改变着世界,并且已经步入到人们的日常生活之中。深度合成作为一种人工智能内容合成技术,在2017年引起人们关注。随着技术的发展,深度合成技术已经衍生出包括图像合成、视频合成、声音合成和文本生成等多种技术,能够应用于新闻传媒、影视制作、娱乐、教育和电子商务等诸多领域。本书面向对深度学习技术感兴趣的初学者,内容侧重于深度学习和深度合成的基础知识和实现方法。为了让尽可能多的读者通过本书了解深度学习和深度合成,书中没有使用过多的数学公式,而是从实践角度介绍深度学习的基本知识,给出了人工神经网络、深度合成技术以及深度学习系统的实现方法,书中附有的大量关键程序代码力图帮助读者结合实践操作快速入门。
    深度学习与深度合成
    搜索《深度学习与深度合成》
    图书

    深度学习之PyTorch物体检测实战 - 图书

    2022计算机·人工智能
    导演:董洪义
    本书从物体检测的概念、发展、经典实现方法等几个方面系统地介绍了物体检测的相关知识,重点介绍了Faster RCNN、SDD和YOLO这三个经典的检测器,并利用PyTorch框架从代码角度进行了细致讲解。另外,本书进一步介绍了物体检测的轻量化网络、细节处理、难点问题及未来的发展趋势,从实战角度给出了多种的解决方法,便于读者更深入地掌握物体检测技术,从而做到在实际项目中灵活应用。 本书共10章,涵盖的主要内容有物体检测与PyTorch框架基础概念与背景;PyTorch基础知识;基础卷积网络Backbone;两阶经典检测器Faster RCNN;单阶多层检测器SSD;单阶经典检测器YOLO;模型加速之轻量化网络;物体检测细节处理;物体检测难点问题;物体检测的未来发展。本书适合PyTorch框架爱好者和物体检测相关从业人员阅读,也适合深度学习和计算机视觉领域的研究人员阅读。
    深度学习之PyTorch物体检测实战
    搜索《深度学习之PyTorch物体检测实战》
    图书

    深度学习之PyTorch物体检测实战 - 图书

    2022计算机·人工智能
    导演:董洪义
    本书从物体检测的概念、发展、经典实现方法等几个方面系统地介绍了物体检测的相关知识,重点介绍了Faster RCNN、SDD和YOLO这三个经典的检测器,并利用PyTorch框架从代码角度进行了细致讲解。另外,本书进一步介绍了物体检测的轻量化网络、细节处理、难点问题及未来的发展趋势,从实战角度给出了多种的解决方法,便于读者更深入地掌握物体检测技术,从而做到在实际项目中灵活应用。 本书共10章,涵盖的主要内容有物体检测与PyTorch框架基础概念与背景;PyTorch基础知识;基础卷积网络Backbone;两阶经典检测器Faster RCNN;单阶多层检测器SSD;单阶经典检测器YOLO;模型加速之轻量化网络;物体检测细节处理;物体检测难点问题;物体检测的未来发展。本书适合PyTorch框架爱好者和物体检测相关从业人员阅读,也适合深度学习和计算机视觉领域的研究人员阅读。
    深度学习之PyTorch物体检测实战
    搜索《深度学习之PyTorch物体检测实战》
    图书
    加载中...