悟空视频

    在线播放云盘网盘BT下载影视图书

    深度学习与计算机视觉——算法原理、框架应用与代码实现 - 图书

    2017计算机·人工智能
    导演:叶韵
    全书共13章,分为2篇。第1篇基础知识,介绍了人工智能发展里程、计算机视觉概要、深度学习和计算机视觉中的基础数学知识、神经网络及其相关的机器学习基础、卷积神经网络及其一些常见结构,最后对最前沿的趋势进行了简单探讨。第2篇实例精讲,介绍了Python基础、OpneCV基础、最简单的分类神经网络、图像识别、利用Caffe做回归、迁移学习和模型微调、目标检测、度量学习和图像风格迁移等常见的计算机视觉应用场景。从第5章开始包含了很多有趣和实用的代码示例。从第7章开始的所有实例都基于当前最流行的深度学习框架中的Caffe和MXNet,其中包含了作者原创的大量代码和搜集的数据,这些代码和作者训练好的部分模型已分享到本书github页面上供读者自行下载。
    深度学习与计算机视觉——算法原理、框架应用与代码实现
    图书

    计算机视觉: 原理、算法、应用及学习 - 图书

    2020
    导演:E. R. Davies
    本书系统地展示了计算机视觉的基本方法学,讲解基础理论的同时,强调算法和实际中的设计约束。此次第5版全面修订,涵盖更多计算机视觉的概念和应用,既适合本科生和研究生,也适合该领域的研究人员和工程师。
    计算机视觉: 原理、算法、应用及学习
    搜索《计算机视觉: 原理、算法、应用及学习》
    图书

    深度学习时代的计算机视觉算法 - 图书

    2022计算机·理论知识
    导演:徐从安 李健伟 董云龙 孙超 等
    本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快速了解这些算法原理,以及其相互之间的关系。本书适合高年级本科生、研究生、教师,以及对人工智能或计算机视觉算法感兴趣的工程技术人员阅读。
    深度学习时代的计算机视觉算法
    搜索《深度学习时代的计算机视觉算法》
    图书

    深度学习实践:计算机视觉 - 图书

    2019计算机·数据库
    导演:缪鹏
    本书主要介绍了深度学习在计算机视觉方面的应用及工程实践,以Python 3为开发语言,并结合当前主流的深度学习框架进行实例展示。主要内容包括:OpenCV入门、深度学习框架介绍、图像分类、目标检测与识别、图像分割、图像搜索以及图像生成等,涉及到的深度学习框架包括PyTorch、TensorFlow、Keras、Chainer、MXNet等。通过本书,读者能够了解深度学习在计算机视觉各个方向的应用以及最新进展。本书的特点是依托工业环境的实践经验,具备较强的实用性和专业性。适合于广大计算机视觉工程领域的从业者、深度学习爱好者、相关专业的大学生和研究生以及对计算机视觉感兴趣的爱好者使用。
    深度学习实践:计算机视觉
    搜索《深度学习实践:计算机视觉》
    图书

    深度学习计算机视觉实战 - 图书

    2021计算机·人工智能
    导演:肖铃 刘东
    本书是一本看懂计算机视觉的实战指南,使用理论与实践相结合的思想,真正一站式搞定理论学习、算法开发到模型部署上线。全书内容共分为四个部分。第一部分包括第1、2章,主要讲解深度学习和计算机视觉基础,如计算机视觉领域的经典网络和常见的目标检测算法;第二部分包括第3~6章,主要讲解图像处理知识,结合应用案例,对知识点进行分析说明;第三部分包括第7~11章,主要讲解计算机视觉中的实战项目,对实现细节做了追本溯源的讲解;第四部分包括第12~13章,主要讲解模型的落地部署,该部分的讲解基于TensorFlow Lite框架,该框架受众广、热度高,且在各种平台都有对应的支持与优化加速方案,方便读者使用。本书中的上百个知识点与50多个案例都是作者工程应用中的经验总结,每章末尾均有“进阶必备”,给读者提供更多的拓展知识。本书适合计算机视觉的初学者、计算机视觉算法开发人员、对深度学习有兴趣的用户或者亟须工程落地使用的用户,也适合作为高校相关专业的学生教材使用。
    深度学习计算机视觉实战
    搜索《深度学习计算机视觉实战》
    图书

    深度学习实践:计算机视觉 - 图书

    2019计算机·数据库
    导演:缪鹏
    本书主要介绍了深度学习在计算机视觉方面的应用及工程实践,以Python 3为开发语言,并结合当前主流的深度学习框架进行实例展示。主要内容包括:OpenCV入门、深度学习框架介绍、图像分类、目标检测与识别、图像分割、图像搜索以及图像生成等,涉及到的深度学习框架包括PyTorch、TensorFlow、Keras、Chainer、MXNet等。通过本书,读者能够了解深度学习在计算机视觉各个方向的应用以及最新进展。本书的特点是依托工业环境的实践经验,具备较强的实用性和专业性。适合于广大计算机视觉工程领域的从业者、深度学习爱好者、相关专业的大学生和研究生以及对计算机视觉感兴趣的爱好者使用。
    深度学习实践:计算机视觉
    搜索《深度学习实践:计算机视觉》
    图书

    计算机视觉应用与实战 - 图书

    2022计算机·人工智能
    导演:韩少云 等
    本书围绕计算机视觉在农业、医学、工业等领域的案例,深入浅出地讲解计算机视觉核心的模型与关键技术。本书中所有案例的代码均能在达内时代科技集团自主研发的 AIX-EBoard 人工智能实验平台上部署与实施,实现了教学场景化、学习趣味化。 本书分为三个部分,循序渐进地介绍计算机视觉相关技术的理论基础和各案例的实践步骤。第 1 部分基于 OpenCV 介绍传统视觉应用的基础算法,同时实现轮廓提取、全景图像拼接等案例的实践;在传统视觉应用的基础上,第 2 部分讲解基于机器学习和深度学习的视觉应用,结合不同行业的案例对图像进行分析处理,如水果识别、病虫害识别、相似图像搜索、眼底血管图像分割等。第 3 部分聚焦市场关注度较高的一些新兴视觉应用的原理及实现,如从二维图像到三维空间的重建、计算机视觉在移动设备中的应用、实时图像和视频的风格迁移等。 本书适合人工智能相关专业的本科生、专科生及计算机初学者阅读,既可以作为应用型本科院校和高等职业院校人工智能专业的教材,也可以作为相关领域从业者的学习和参考用书。本书可以帮助有一定基础的读者查漏补缺,深入理解和掌握相关原理与方法,提高解决实际问题的能力。
    计算机视觉应用与实战
    搜索《计算机视觉应用与实战》
    图书

    计算机视觉应用与实战 - 图书

    2022计算机·人工智能
    导演:韩少云 等
    本书围绕计算机视觉在农业、医学、工业等领域的案例,深入浅出地讲解计算机视觉核心的模型与关键技术。本书中所有案例的代码均能在达内时代科技集团自主研发的 AIX-EBoard 人工智能实验平台上部署与实施,实现了教学场景化、学习趣味化。 本书分为三个部分,循序渐进地介绍计算机视觉相关技术的理论基础和各案例的实践步骤。第 1 部分基于 OpenCV 介绍传统视觉应用的基础算法,同时实现轮廓提取、全景图像拼接等案例的实践;在传统视觉应用的基础上,第 2 部分讲解基于机器学习和深度学习的视觉应用,结合不同行业的案例对图像进行分析处理,如水果识别、病虫害识别、相似图像搜索、眼底血管图像分割等。第 3 部分聚焦市场关注度较高的一些新兴视觉应用的原理及实现,如从二维图像到三维空间的重建、计算机视觉在移动设备中的应用、实时图像和视频的风格迁移等。 本书适合人工智能相关专业的本科生、专科生及计算机初学者阅读,既可以作为应用型本科院校和高等职业院校人工智能专业的教材,也可以作为相关领域从业者的学习和参考用书。本书可以帮助有一定基础的读者查漏补缺,深入理解和掌握相关原理与方法,提高解决实际问题的能力。
    计算机视觉应用与实战
    搜索《计算机视觉应用与实战》
    图书

    机器视觉与机器学习:算法原理、框架应用与代码实现 - 图书

    2020计算机·软件学习
    导演:宋丽梅 朱新军编著
    《机器视觉与机器学习——算法原理、框架应用与代码实现》内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为Shape from X;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、Intel RealSense等深度相机的知识与相关应用;第9章为机器学习基础;第10章为机器学习在机器视觉领域的应用,包括机器学习在模式识别、图像超分辨率重建、图像去噪、目标跟踪、三维重建等方面的应用。
    机器视觉与机器学习:算法原理、框架应用与代码实现
    搜索《机器视觉与机器学习:算法原理、框架应用与代码实现》
    图书

    深度学习与计算机视觉 项目式教材 - 图书

    2024计算机·人工智能
    导演:彭飞 张强
    本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视觉中的应用,并基于国产自主可控龙芯处理器进行工程实践。 本书适合深度学习与计算机视觉领域的从业者、深度学习与计算机视觉的爱好者阅读,也可作为高等院校计算机相关专业的教材。
    深度学习与计算机视觉 项目式教材
    搜索《深度学习与计算机视觉 项目式教材》
    图书
    加载中...