悟空视频

    在线播放云盘网盘BT下载影视图书

    深度学习原理与TensorFlow实践 - 图书

    导演:喻俨
    《深度学习原理与TensorFlow实践》主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,《深度学习原理与TensorFlow实践》结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。同时,《深度学习原理与TensorFlow实践》着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。 《深度学习原理与TensorFlow实践》非常适合对机器学习、深度学习感兴趣的读者,或是对深度学习理论有所了解,希望尝试更多工程实践的读者,抑或是对工程产品有较多经验,希望学习深度学习理论的读者。
    深度学习原理与TensorFlow实践
    图书

    深度学习原理与TensorFlow实践 - 图书

    导演:喻俨
    《深度学习原理与TensorFlow实践》主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,《深度学习原理与TensorFlow实践》结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。同时,《深度学习原理与TensorFlow实践》着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。 《深度学习原理与TensorFlow实践》非常适合对机器学习、深度学习感兴趣的读者,或是对深度学习理论有所了解,希望尝试更多工程实践的读者,抑或是对工程产品有较多经验,希望学习深度学习理论的读者。
    深度学习原理与TensorFlow实践
    图书

    深度学习原理与实践 - 图书

    导演:陈仲铭
    本书详细介绍了目前深度学习相关的常用网络模型(ANN、CNN、RNN),以及不同网络模型的算法原理和核心思想。本书利用大量的实例代码对网络模型进行了分析,这些案例能够加深读者对网络模型的认识。此外,本书还提供完整的进阶内容和对应案例,让读者全面深入地了解深度学习的知识和技巧,达到学以致用的目的。 适用于大数据平台系统工程师、算法工程师、数据科学家,可作为对人工智能和深度学习感兴趣的计算机相关从业人员的学习用书,也可作为计算机等相关专业的师生用书和培训学校的教材。
    深度学习原理与实践
    搜索《深度学习原理与实践》
    图书

    深度学习:原理与应用实践 - 图书

    2016计算机·人工智能
    导演:张重生
    深度学习与大数据是当今最流行和最受关注的两大计算机技术方向。本书旨在成为国内第一本深度学习原著。本书将全面、系统地介绍深度学习相关的技术,包括人工神经网络,卷积神经网络,深度学习平台及源代码分析,深度学习入门与进阶,深度学习高级实践,所有章节均附有源程序,所有实验读者均可重现,具有高度的可操作性和实用性。 通过本书,研究人员、深度学习爱好者,能够在2-3个月内,系统掌握深度学习相关的理论和技术。
    深度学习:原理与应用实践
    搜索《深度学习:原理与应用实践》
    图书

    深度学习:原理与应用实践 - 图书

    2016计算机·人工智能
    导演:张重生
    深度学习与大数据是当今最流行和最受关注的两大计算机技术方向。本书旨在成为国内第一本深度学习原著。本书将全面、系统地介绍深度学习相关的技术,包括人工神经网络,卷积神经网络,深度学习平台及源代码分析,深度学习入门与进阶,深度学习高级实践,所有章节均附有源程序,所有实验读者均可重现,具有高度的可操作性和实用性。 通过本书,研究人员、深度学习爱好者,能够在2-3个月内,系统掌握深度学习相关的理论和技术。
    深度学习:原理与应用实践
    搜索《深度学习:原理与应用实践》
    图书

    白话深度学习与TensorFlow - 图书

    2017计算机·人工智能
    导演:高扬
    全书分为3篇: 基础篇:介绍深度学习的基本概念和Tensorflow的基本介绍。 原理篇:大量的关于深度学习中BP、CNN以及RNN网络等概念的数学知识解析,加以更朴素的语言与类比,使得非数学专业的程序员还是能够比较容易看懂。 应用篇:介绍Tensorflow的架构、组件与相对简单的使用,有3个左右的具体的工程示例,带领读者从训练集准备到训练,到分类,到调优,整个过程融会贯通。 读完这一本书,一个人基本具备了搭建全套Tensorflow应用环境的能力。以及进行一般性的文章分类、音频分类或视频分类的能力。
    白话深度学习与TensorFlow
    搜索《白话深度学习与TensorFlow》
    图书

    白话深度学习与TensorFlow - 图书

    2017计算机·人工智能
    导演:高扬
    全书分为3篇: 基础篇:介绍深度学习的基本概念和Tensorflow的基本介绍。 原理篇:大量的关于深度学习中BP、CNN以及RNN网络等概念的数学知识解析,加以更朴素的语言与类比,使得非数学专业的程序员还是能够比较容易看懂。 应用篇:介绍Tensorflow的架构、组件与相对简单的使用,有3个左右的具体的工程示例,带领读者从训练集准备到训练,到分类,到调优,整个过程融会贯通。 读完这一本书,一个人基本具备了搭建全套Tensorflow应用环境的能力。以及进行一般性的文章分类、音频分类或视频分类的能力。
    白话深度学习与TensorFlow
    搜索《白话深度学习与TensorFlow》
    图书

    深度强化学习: 原理与实践 - 图书

    导演:陈仲铭
    本书构建了一个完整的深度强化学习理论和实践体系:从马尔科夫决策过程开始,根据价值函数、策略函数求解贝尔曼方程,到利用深度学习模拟价值网络和策略网络。书中详细介绍了深度强化学习相关最新算法,如Rainbow、APE-X算法等,并阐述了相关算法的具体实现方式和代表性应用(如AlphaGo)。此外,本书还深度剖析了强化学习各算法之间的联系,有助于读者举一反三。 本书分为4个部分:初探强化学习、求解强化学习、求解强化学习进阶和深度强化学习。涉及基础理论到深度强化学习算法框架的各方面内容,反映了深度强化学习领域过去的发展历程和最新的研究进展,有助于读者发现该领域中新的研究问题和方向。 本书适用于计算机视觉、计算机自然语言的相关从业人员,以及对人工智能、机器学习和深度学习感兴趣的人员,还可作为高等院校计算机等相关专业本科生及研究生的参考用书。
    深度强化学习: 原理与实践
    搜索《深度强化学习: 原理与实践》
    图书

    深度学习之TensorFlow:入门、原理与进阶实战 - 图书

    2021计算机·人工智能
    导演:李金洪
    本书针对TensorFlow 1.0以上版本编写,采用“理论+实践”的形式编写,通过大量的实例(共96个),全面而深入地讲解“深度学习神经网络原理”和“Tensorflow使用方法”两方面。书中的实例具有很强的实用,如对图片分类、制作一个简单的聊天机器人、进行图像识别等。书中的每章都配有一段教学视频,视频和图书具有一样的内容和结构,能帮助读者快速而全面地了解本章的内容。本书还免费提供了所有案例的源代码及数据样本,这些代码和样本不仅方便了读者学习,而且也能为以后的工作提供便利。 全书共分为3篇:第1篇“深度学习与TensorFlow基础”,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、一个识别图中模糊的数字的案例;第2篇“深度学习基础——神经网络”介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络;第3篇“神经网络进阶”,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络、对抗神经网络。 本书结构清晰、案例丰富、通俗易懂、实用性强。特别适合TensorFlow深度学习的初学者和进阶读者作为自学教程阅读。另外,本书也适合社会培训学校作为培训教材使用,还适合大中专院校的相关专业作为教学参考书。
    深度学习之TensorFlow:入门、原理与进阶实战
    搜索《深度学习之TensorFlow:入门、原理与进阶实战》
    图书

    深度学习之TensorFlow:入门、原理与进阶实战 - 图书

    2021计算机·人工智能
    导演:李金洪
    本书针对TensorFlow 1.0以上版本编写,采用“理论+实践”的形式编写,通过大量的实例(共96个),全面而深入地讲解“深度学习神经网络原理”和“Tensorflow使用方法”两方面。书中的实例具有很强的实用,如对图片分类、制作一个简单的聊天机器人、进行图像识别等。书中的每章都配有一段教学视频,视频和图书具有一样的内容和结构,能帮助读者快速而全面地了解本章的内容。本书还免费提供了所有案例的源代码及数据样本,这些代码和样本不仅方便了读者学习,而且也能为以后的工作提供便利。 全书共分为3篇:第1篇“深度学习与TensorFlow基础”,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、一个识别图中模糊的数字的案例;第2篇“深度学习基础——神经网络”介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络;第3篇“神经网络进阶”,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络、对抗神经网络。 本书结构清晰、案例丰富、通俗易懂、实用性强。特别适合TensorFlow深度学习的初学者和进阶读者作为自学教程阅读。另外,本书也适合社会培训学校作为培训教材使用,还适合大中专院校的相关专业作为教学参考书。
    深度学习之TensorFlow:入门、原理与进阶实战
    搜索《深度学习之TensorFlow:入门、原理与进阶实战》
    图书
    加载中...