悟空视频

    在线播放云盘网盘BT下载影视图书

    深度学习推荐系统2.0 - 图书

    导演:王喆
    深度学习和大模型技术在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技术、大模型、AIGC、模型工程实现、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。 《深度学习推荐系统2.0(全彩)》既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本科生、研究生、博士生阅读,帮助建立深度学习推荐系统的技术框架。通过学习前沿案例,读者可加强深度学习理论与推荐系统工程实践的融合能力。
    深度学习推荐系统2.0
    图书

    深度学习推荐系统 - 图书

    2020科学技术·工业技术
    导演:王喆
    深度学习在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技 术、推荐系统工程实现、模型评估体系、业界前沿实践等几个方面介绍了这场技术革命中的主 流技术要点。
    深度学习推荐系统
    搜索《深度学习推荐系统》
    图书

    PyTorch 2.0深度学习从零开始学 - 图书

    2023科学技术·工业技术
    导演:王晓华
    PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中****的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。 《PyTorch?2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。
    PyTorch 2.0深度学习从零开始学
    搜索《PyTorch 2.0深度学习从零开始学》
    图书

    PyTorch 2.0深度学习从零开始学 - 图书

    2023科学技术·工业技术
    导演:王晓华
    PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中****的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。 《PyTorch?2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。
    PyTorch 2.0深度学习从零开始学
    搜索《PyTorch 2.0深度学习从零开始学》
    图书

    统计推荐系统 - 图书

    导演:Deepak K. Agarwal
    推荐系统无处不在,已经成为我们日常生活的一部分。本书由LinkedIn公司的两位技术专家撰写,着眼于推荐系统的核心——统计方法,不仅介绍算法理论,而且包含实验分析及结果展示,分享了作者丰富的实战经验。 书中对推荐系统进行了全面讨论,特别是面向日益突显的多反馈和多目标优化问题,深入分析了当前先进的统计方法,如自适应序贯设计(多臂赌博机方法)、双线性随机效应模型(矩阵分解)以及基于MapReduce分布式框架的可伸缩模型,为热门推荐和个性化推荐提供了实用的解决方案。全书将基于回归的响应预测方法作为主要工具,兼顾实验设计和统计模型开发,关注探索和利用之间的权衡。
    统计推荐系统
    搜索《统计推荐系统》
    图书

    实用推荐系统 - 图书

    2021
    导演:Kim Falk
    要构建一个实用的“智能”推荐系统,不仅需要有好的算法,还需要了解接收推荐的用户。本书分为两部分,第一部分侧重于基础架构,主要介绍推荐系统的工作原理,展示如何创建推荐系统,以及给应用程序增加推荐系统时,应该如何收集和应用数据;第二部分侧重于算法,介绍推荐系统的算法,以及如何使用系统收集的数据来计算向用户推荐什么内容。作者还讲述了如何使用最流行的推荐算法,并剖析它们在Amazon 和Netflix 等网站上的实际应用。 《实用推荐系统》适合对推荐系统感兴趣的开发人员阅读,从事数据科学行业的读者也能从书中获得启发。
    实用推荐系统
    搜索《实用推荐系统》
    图书

    推荐系统实践 - 图书

    2012计算机·计算机综合
    导演:项亮
    本书从数据出发,一步步地介绍在得到什么数据的时候可以设计怎样的推荐系统。面向广大的推荐系统开发人员,以实战为基础,深入浅出地介绍每种推荐方法背后的理论基础,着重讨论每种算法的实现、在实际系统中的效果、方法的优点、缺陷以及解决方法。本书的几位作者是目前国内推荐系统方面做得最好的技术人员。
    推荐系统实践
    搜索《推荐系统实践》
    图书

    推荐系统实践 - 图书

    导演:项亮
    内容简介: 随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(information overload)的时代 。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:对于信息消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾的重要工具。推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。
    推荐系统实践
    搜索《推荐系统实践》
    图书

    检索匹配:深度学习在搜索、广告、推荐系统中的应用 - 图书

    2022计算机·计算机综合
    导演:康善同 编著
    1. 聚焦互联网三大核心业务,详细阐述了检索匹配的理论和演进历史。 2. 通过落地一个基于深度学习算法模型的分布式机器学习业务案例来加深读者理解。 3. 随书免费赠送全部案例源代码和超过180分钟的高清学习视频。
    检索匹配:深度学习在搜索、广告、推荐系统中的应用
    搜索《检索匹配:深度学习在搜索、广告、推荐系统中的应用》
    图书

    检索匹配:深度学习在搜索、广告、推荐系统中的应用 - 图书

    2022计算机·计算机综合
    导演:康善同 编著
    1. 聚焦互联网三大核心业务,详细阐述了检索匹配的理论和演进历史。 2. 通过落地一个基于深度学习算法模型的分布式机器学习业务案例来加深读者理解。 3. 随书免费赠送全部案例源代码和超过180分钟的高清学习视频。
    检索匹配:深度学习在搜索、广告、推荐系统中的应用
    搜索《检索匹配:深度学习在搜索、广告、推荐系统中的应用》
    图书
    加载中...