悟空视频

    在线播放云盘网盘BT下载影视图书

    深度实践OCR:基于深度学习的文字识别 - 图书

    2021计算机·软件学习
    导演:刘树春 贺盼 马建奇 王佳军
    内容简介 这是一部融合了企业界先进工程实践经验和学术界前沿技术和思想的ORC著作。 本书由阿里巴巴本地生活研究院算法团队技术专家领衔,从组件、算法、实现、工程应用等维度系统讲解基于深度学习的OCR技术的原理和落地。书中一步步剖析了算法背后的数学原理,提供大量简洁的代码实现,帮助读者从零基础开始构建OCR算法。 全书共9章: 第1章从宏观角度介绍了ORC技术的发展历程、概念和产业应用; 第2章讲解了OCR的图像预处理方法; 第3~4章介绍了传统机器学习方法和深度学习的相关基础; 第5章讲解了基于传统方法和深度学习方法的OCR的数据生成; 第6章讲解了与OCR相关的一些高级深度学习方法,方便读者理解后续的检测和识别部分; 第7章讲解了文字的检测技术,从通用的目标检测到文字的检测,一步步加深读者对文字检测问题的认识; 第8章讨论了文字识别的相关技术,定位到文字的位置之后,需要对文字的内容进行进一步的解析; 第9章介绍了一些OCR后处理的方法。
    深度实践OCR:基于深度学习的文字识别
    图书

    深度实践OCR:基于深度学习的文字识别 - 图书

    2021计算机·软件学习
    导演:刘树春 贺盼 马建奇 王佳军
    内容简介 这是一部融合了企业界先进工程实践经验和学术界前沿技术和思想的ORC著作。 本书由阿里巴巴本地生活研究院算法团队技术专家领衔,从组件、算法、实现、工程应用等维度系统讲解基于深度学习的OCR技术的原理和落地。书中一步步剖析了算法背后的数学原理,提供大量简洁的代码实现,帮助读者从零基础开始构建OCR算法。 全书共9章: 第1章从宏观角度介绍了ORC技术的发展历程、概念和产业应用; 第2章讲解了OCR的图像预处理方法; 第3~4章介绍了传统机器学习方法和深度学习的相关基础; 第5章讲解了基于传统方法和深度学习方法的OCR的数据生成; 第6章讲解了与OCR相关的一些高级深度学习方法,方便读者理解后续的检测和识别部分; 第7章讲解了文字的检测技术,从通用的目标检测到文字的检测,一步步加深读者对文字检测问题的认识; 第8章讨论了文字识别的相关技术,定位到文字的位置之后,需要对文字的内容进行进一步的解析; 第9章介绍了一些OCR后处理的方法。
    深度实践OCR:基于深度学习的文字识别
    图书

    深度学习实践:基于Caffe的解析 - 图书

    2021计算机·人工智能
    导演:薛云峰
    本书主要介绍Caffe的技术原理和一些高级使用技巧,首先介绍深度学习的趋势和业内动态。然后是关于Caffe的基础知识,介绍如何安装和武器库。在理解Caffe算法基础上,介绍Caffe的技术原理和特点,包括数学知识和设计知识。之后是Caffe各层使用的进阶,介绍每一层是什么,作用和实现及其使用的一般性原则和原理。最后是Caffe深度学习多任务网络,介绍多任务网络的现状,基本的网络配置,高级网络配置和网络解决方案的进阶。本书实践内容和现有系统进行无缝对接,并提供了各种调参技巧的黑魔法。
    深度学习实践:基于Caffe的解析
    搜索《深度学习实践:基于Caffe的解析》
    图书

    深度学习实践教程 - 图书

    2020计算机·理论知识
    导演:吴微编著
    本书共分8章,内容包括深度学习基础、深度学习框架PyTorch的安装、PyTorch基础、线性回归和逻辑回归、全连接神经网络、卷积神经网络、循环神经网络及生成式对抗网络。本书首先从深度学习基础知识入手,引领读者动手搭建深度学习框架PyTorch,然后在PyTorch框架下实现深度学习中常用的网络模型。通过本书,读者可对深度学习有一个清晰的认识。本书中的程序均可在Windows系统中运行,不受是否具备GPU的限制。本书提供电子课件、源代码,读者可登录“华信教育资源网”(www.hxedu.com.cn)免费下载。书中每章都配有习题和实验,最后还附有参考答案。本书可作为高等学校本科数据科学与大数据、人工智能、机器人工程等专业深度学习相关课程的教材,也适合广大对深度学习有兴趣的读者自学使用。
    深度学习实践教程
    搜索《深度学习实践教程》
    图书

    Python深度学习:基于PyTorch - 图书

    2022计算机·编程设计
    导演:吴茂贵 郁明敏 杨本法 李涛 张粤磊
    内容介绍 这是一本基于*新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第壹部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
    Python深度学习:基于PyTorch
    搜索《Python深度学习:基于PyTorch》
    图书

    Python深度学习:基于TensorFlow - 图书

    2018计算机·编程设计
    导演:吴茂贵
    在机器学习、深度学习中有很多抽象的概念、复杂的算法、深奥的理论,如Numpy的广播机制、神经网络中的共享参数、动量优化法、梯度消失或爆炸等,这些内容如果只用文字来描述,可能很难达到茅塞顿开的效果,但如果用一些图形来展现,再加上适当的文字说明,往往能取得非常好的效果,正所谓一张好图胜过千言万语。
    Python深度学习:基于TensorFlow
    搜索《Python深度学习:基于TensorFlow》
    图书

    Python深度学习:基于PyTorch - 图书

    2022计算机·编程设计
    导演:吴茂贵 郁明敏 杨本法 李涛 张粤磊
    内容介绍 这是一本基于*新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第壹部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
    Python深度学习:基于PyTorch
    搜索《Python深度学习:基于PyTorch》
    图书

    深度学习与图像识别:原理与实践 - 图书

    2023计算机·人工智能
    导演:魏溪含 涂铭 张修鹏
    本书是一本有关人工智能图像识别应用开发与实践指导类的教材,主要介绍图像处理应用项目开发的基本流程、图像识别处理应用项目关键技术。本书直击当今研究热点,选择有代表性的专题项目而且尽量避免复杂的数学推导,易于读者理解,专注于实战。详细介绍了numpy,knn,线性回归,逻辑回归,神经网络在图像识别上的应用,并为后一部分的深度学习做好铺垫。同时,针对每一个项目介绍项目的应用及意义,该项目的数据特征分析、识别系统设计、图像预处理技术、特征提取技术,以及识别方法等。书中实例程序的框架结构简单,代码简洁,读者可在数字图像处理技术的基础上进一步深化学习内容,提高实践应用能力和项目开发能力。
    深度学习与图像识别:原理与实践
    搜索《深度学习与图像识别:原理与实践》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    深度学习入门与实践 - 图书

    2023计算机·人工智能
    导演:王舒禹 吕鑫
    大约在一百年前,电气化改变了交通运输行业、制造业、医疗行业、通信行业,如今AI带来了同样巨大的改变。AI的各个分支中发展最为迅速的方向之一就是深度学习。 本书主要涉及以下内容:第1部分是神经网络的基础,学习如何建立神经网络,以及如何在数据上面训练它们。第2部分进行深度学习方面的实践,学习如何构建神经网络与超参数调试、正则化以及一些高级优化算法。第3部分学习卷积神经网络(CNN),以及如何搭建模型、有哪些经典模型。它经常被用于图像领域,此外目标检测、风格迁移等应用也将涉及。最后在第4部分学习序列模型,以及如何将它们应用于自然语言处理等任务。序列模型讲到的算法有循环神经网络(RNN)、长短期记忆网络(LSTM)、注意力机制。 通过以上内容的学习,读者可以入门深度学习领域并打下扎实基础,为后续了解和探索人工智能前沿科技做知识储备。 本书配有电子课件,需要配套资源的教师可登录机械工业出版社教育服务网www.cmpedu.com免费注册后下载。
    深度学习入门与实践
    搜索《深度学习入门与实践》
    图书
    加载中...