悟空视频

    在线播放云盘网盘BT下载影视图书

    深度强化学习--算法原理与金融实践入门 - 图书

    2023计算机·人工智能
    导演:谢文杰 周炜星
    深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(DQN、AC、DDPG等);第4部分(第10章)为总结和展望。每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步深入探索。 本书可作为高等院校计算机、智能金融及相关专业的本科生或研究生教材,也可供对深度强化学习感兴趣的研究人员和工程技术人员阅读参考。
    深度强化学习--算法原理与金融实践入门
    图书

    深度强化学习--算法原理与金融实践入门 - 图书

    2023计算机·人工智能
    导演:谢文杰 周炜星
    深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(DQN、AC、DDPG等);第4部分(第10章)为总结和展望。每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步深入探索。 本书可作为高等院校计算机、智能金融及相关专业的本科生或研究生教材,也可供对深度强化学习感兴趣的研究人员和工程技术人员阅读参考。
    深度强化学习--算法原理与金融实践入门
    图书

    深度强化学习: 原理与实践 - 图书

    导演:陈仲铭
    本书构建了一个完整的深度强化学习理论和实践体系:从马尔科夫决策过程开始,根据价值函数、策略函数求解贝尔曼方程,到利用深度学习模拟价值网络和策略网络。书中详细介绍了深度强化学习相关最新算法,如Rainbow、APE-X算法等,并阐述了相关算法的具体实现方式和代表性应用(如AlphaGo)。此外,本书还深度剖析了强化学习各算法之间的联系,有助于读者举一反三。 本书分为4个部分:初探强化学习、求解强化学习、求解强化学习进阶和深度强化学习。涉及基础理论到深度强化学习算法框架的各方面内容,反映了深度强化学习领域过去的发展历程和最新的研究进展,有助于读者发现该领域中新的研究问题和方向。 本书适用于计算机视觉、计算机自然语言的相关从业人员,以及对人工智能、机器学习和深度学习感兴趣的人员,还可作为高等院校计算机等相关专业本科生及研究生的参考用书。
    深度强化学习: 原理与实践
    搜索《深度强化学习: 原理与实践》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    强化学习入门:从原理到实践 - 图书

    2020计算机·编程设计
    导演:叶强 闫维新 黎斌
    本书以理论和实践相结合的形式深入浅出地介绍强化学习的历史、基本概念、经典算法和一些前沿技术,共分为三大部分:第壹部分(1~5章)介绍强化学习的发展历史、强化学习的基本概念以及一些经典的强化学习算法;第二部分(6~9章)在简要回顾深度学习技术的基础上着重介绍深度强化学习的一些前沿实用算法;第三部分(*后一章)以五子棋为例详细讲解战胜了人类顶级围棋选手的Alpha Zero算法的核心思想。
    强化学习入门:从原理到实践
    搜索《强化学习入门:从原理到实践》
    图书

    强化学习入门:从原理到实践 - 图书

    2020计算机·编程设计
    导演:叶强 闫维新 黎斌
    本书以理论和实践相结合的形式深入浅出地介绍强化学习的历史、基本概念、经典算法和一些前沿技术,共分为三大部分:第壹部分(1~5章)介绍强化学习的发展历史、强化学习的基本概念以及一些经典的强化学习算法;第二部分(6~9章)在简要回顾深度学习技术的基础上着重介绍深度强化学习的一些前沿实用算法;第三部分(*后一章)以五子棋为例详细讲解战胜了人类顶级围棋选手的Alpha Zero算法的核心思想。
    强化学习入门:从原理到实践
    搜索《强化学习入门:从原理到实践》
    图书

    深度学习入门4:强化学习 - 图书

    2024科学技术·工业技术
    导演:斋藤康毅
    本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续“鱼书”系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。
    深度学习入门4:强化学习
    搜索《深度学习入门4:强化学习》
    图书

    深度学习入门4: 强化学习 - 图书

    导演:斋藤康毅
    本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续“鱼书”系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。 编辑推荐 沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。 本书有什么特点? ●把握潮流中的变与不变 在快速发展变化的深度学习领域,有变化的事物,有不变的事物。有些事物会...(展开全部)
    深度学习入门4: 强化学习
    搜索《深度学习入门4: 强化学习》
    图书

    深度强化学习理论与实践 - 图书

    2023科学技术·工业技术
    导演:龙强 章胜
    本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍了强化学习的模型,第5章简单介绍了深度学习和PyTorch编程框架。 本书可以作为理工科大学相关专业研究生的学位课教材,也可以作为人工智能、机器学习相关专业高年级本科生的选修课教材,还可以作为相关领域学术研究人员、教师和工程技术人员的参考资料。
    深度强化学习理论与实践
    搜索《深度强化学习理论与实践》
    图书
    加载中...