悟空视频

    在线播放云盘网盘BT下载影视图书

    深度强化学习图解 - 图书

    导演:米格尔·莫拉莱斯著
    我们在与环境交互的过程中进行学习,经历的奖励 或惩罚将指导我们未来的行为。深度强化学习将该过程 引入人工智能领域,通过分析结果来寻找最有效的前进 方式。DRL智能体可提升营销效果、预测股票涨跌,甚 至击败顶尖围棋高手和国际象棋大师。 《深度强化学习图解》呈现生动示例,指导你构建 深度学习体系。Python代码包含详明、直观的注释,助 你深刻理解DRL技术。你将学习算法的运行方式,并学 会用评估性反馈来开发自己的DRL智能体。 本书主要内容包括: ●强化学习入门 ●行为与人类似的DRL智能体 ●在复杂情况下应用DRL 本书适用于具有基础深度学习经验的开发者。
    深度强化学习图解
    图书

    深度强化学习 - 图书

    2022
    导演:王树森
    本书基于备受读者推崇的王树森“深度强化学习”系列公开视频课,专门解决“入门深度强化学习难”的问题。 本书的独特之处在于:第一,知识精简,剔除一切不必要的概念和公式,学起来轻松;第二,内容新颖,聚焦近10年深度强化学习领域的突破,让你一上手就紧跟最新技术。本书系统讲解深度强化学习的原理与实现,但不回避数学公式和各种模型,原创100多幅精美插图,并以全彩印刷展示。简洁清晰的语言+生动形象的图示,助你扫除任何可能的学习障碍!本书内容分为五部分:基础知识、价值学习、策略学习、多智能体强化学习、应用与展望,涉及DQN、A3C、TRPO、DDPG、AlphaGo等。 本书面向深度强化学习入门读者,助你构建完整的知识体系。学完本书,你能够轻松看懂深度强化学习的实现代码、读懂该领域的论文、听懂学术报告,具备进一步自学和深挖的能力。
    深度强化学习
    搜索《深度强化学习》
    图书

    深度强化学习 - 图书

    2021
    导演:Laura Graesser
    深度强化学习结合了深度学习和强化学习,使人工智能体能够在没有监督的情况下学习如何解决顺序决策问题。在过去的十年中,深度强化学习在一系列问题上取得了显著的成果,涵盖从单机游戏和多人游戏到机器人技术等方方面面。本书采用理论结合实践的方法,从直觉开始,然后仔细解释深度强化学习算法的理论,讨论在配套软件库SLM Lab中的实现,最后呈现深度强化学习算法的实践细节。 通过本书,你将: 理解深度强化学习问题的每个关键方面。 探索基于策略和基于值的算法,包括REINFORCE算法、SARSA算法、深度Q网络(DQN)算法和改进的深度Q网络算法。 深入研究基于策略和基于值的组合算法,包括演员-评论家算法和近端策略优化(PPO)算法。 了解算法的同步并行和异步并行。 在SLM Lab中运行算法,学习深度强化学习的实现细节。 探索算法基准测试结果与调优超参数。 了解深度...(展开全部)
    深度强化学习
    搜索《深度强化学习》
    图书

    深度强化学习 - 图书

    2022
    导演:王树森
    本书基于备受读者推崇的王树森“深度强化学习”系列公开视频课,专门解决“入门深度强化学习难”的问题。 本书的独特之处在于:第一,知识精简,剔除一切不必要的概念和公式,学起来轻松;第二,内容新颖,聚焦近10年深度强化学习领域的突破,让你一上手就紧跟最新技术。本书系统讲解深度强化学习的原理与实现,但不回避数学公式和各种模型,原创100多幅精美插图,并以全彩印刷展示。简洁清晰的语言+生动形象的图示,助你扫除任何可能的学习障碍!本书内容分为五部分:基础知识、价值学习、策略学习、多智能体强化学习、应用与展望,涉及DQN、A3C、TRPO、DDPG、AlphaGo等。 本书面向深度强化学习入门读者,助你构建完整的知识体系。学完本书,你能够轻松看懂深度强化学习的实现代码、读懂该领域的论文、听懂学术报告,具备进一步自学和深挖的能力。
    深度强化学习
    搜索《深度强化学习》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    深度强化学习实战 - 图书

    导演:亚历山大 · 扎伊
    本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。
    深度强化学习实战
    搜索《深度强化学习实战》
    图书

    深度强化学习实战 - 图书

    2023科学技术·工业技术
    导演:亚历山大·扎伊 布兰登·布朗
    本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。
    深度强化学习实战
    搜索《深度强化学习实战》
    图书

    深度强化学习实战 - 图书

    2023科学技术·工业技术
    导演:亚历山大·扎伊 布兰登·布朗
    本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。
    深度强化学习实战
    搜索《深度强化学习实战》
    图书

    深度强化学习实践 - 图书

    2021计算机·人工智能
    导演:马克西姆·拉潘
    本书的主题是强化学习(Reinforcement Learning,RL),它是机器学习(Machine Learning,ML)的一个分支,强调如何解决在复杂环境中选择最优动作时产生的通用且极具挑战的问题。学习过程仅由奖励值和从环境中获得的观察驱动。该模型非常通用,能应用于多个真实场景,从玩游戏到优化复杂制造过程都能涵盖。
    深度强化学习实践
    搜索《深度强化学习实践》
    图书

    深度学习入门4: 强化学习 - 图书

    导演:斋藤康毅
    本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续“鱼书”系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。 编辑推荐 沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。 本书有什么特点? ●把握潮流中的变与不变 在快速发展变化的深度学习领域,有变化的事物,有不变的事物。有些事物会...(展开全部)
    深度学习入门4: 强化学习
    搜索《深度学习入门4: 强化学习》
    图书
    加载中...