悟空视频

    在线播放云盘网盘BT下载影视图书

    统计推荐系统 - 图书

    导演:Deepak K. Agarwal
    推荐系统无处不在,已经成为我们日常生活的一部分。本书由LinkedIn公司的两位技术专家撰写,着眼于推荐系统的核心——统计方法,不仅介绍算法理论,而且包含实验分析及结果展示,分享了作者丰富的实战经验。 书中对推荐系统进行了全面讨论,特别是面向日益突显的多反馈和多目标优化问题,深入分析了当前先进的统计方法,如自适应序贯设计(多臂赌博机方法)、双线性随机效应模型(矩阵分解)以及基于MapReduce分布式框架的可伸缩模型,为热门推荐和个性化推荐提供了实用的解决方案。全书将基于回归的响应预测方法作为主要工具,兼顾实验设计和统计模型开发,关注探索和利用之间的权衡。
    统计推荐系统
    图书

    实用推荐系统 - 图书

    2021
    导演:Kim Falk
    要构建一个实用的“智能”推荐系统,不仅需要有好的算法,还需要了解接收推荐的用户。本书分为两部分,第一部分侧重于基础架构,主要介绍推荐系统的工作原理,展示如何创建推荐系统,以及给应用程序增加推荐系统时,应该如何收集和应用数据;第二部分侧重于算法,介绍推荐系统的算法,以及如何使用系统收集的数据来计算向用户推荐什么内容。作者还讲述了如何使用最流行的推荐算法,并剖析它们在Amazon 和Netflix 等网站上的实际应用。 《实用推荐系统》适合对推荐系统感兴趣的开发人员阅读,从事数据科学行业的读者也能从书中获得启发。
    实用推荐系统
    搜索《实用推荐系统》
    图书

    推荐系统实践 - 图书

    2012计算机·计算机综合
    导演:项亮
    本书从数据出发,一步步地介绍在得到什么数据的时候可以设计怎样的推荐系统。面向广大的推荐系统开发人员,以实战为基础,深入浅出地介绍每种推荐方法背后的理论基础,着重讨论每种算法的实现、在实际系统中的效果、方法的优点、缺陷以及解决方法。本书的几位作者是目前国内推荐系统方面做得最好的技术人员。
    推荐系统实践
    搜索《推荐系统实践》
    图书

    推荐系统实践 - 图书

    导演:项亮
    内容简介: 随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(information overload)的时代 。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:对于信息消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾的重要工具。推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。
    推荐系统实践
    搜索《推荐系统实践》
    图书

    深度学习推荐系统 - 图书

    2020科学技术·工业技术
    导演:王喆
    深度学习在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技 术、推荐系统工程实现、模型评估体系、业界前沿实践等几个方面介绍了这场技术革命中的主 流技术要点。
    深度学习推荐系统
    搜索《深度学习推荐系统》
    图书

    推荐系统:原理与实践 - 图书

    导演:Charu C. Aggarwal
    本书介绍当前推荐系统领域中的经典方法。不仅详细讨论了各类方法,还对同类技术进行了归纳总结,这有助于读者对当前推荐系统研究领域有全面的了解。书中提供了大量的例子和习题来帮助读者深入理解和掌握相关技术。此外,本书还介绍了当前新的研究方向,为读者进行推荐系统技术的研究提供参考。本书既可以作为计算机相关专业本科生和研究生的教材,也适合开发人员和研究人员阅读。
    推荐系统:原理与实践
    搜索《推荐系统:原理与实践》
    图书

    推荐系统开发实战 - 图书

    导演:高阳团 编著
    《推荐系统开发实战》是一本关于推荐系统从入门到进阶的读物,采用“理论+实践”的形式展开,不仅对各种推荐算法进行了介绍,还对算法所涉及的基础理论知识进行了补充。 全书共分为3篇: 第1篇是“推荐系统的背景介绍和入门”,包括走进推荐系统、搭建你的第一个推荐系统和推荐系统常用数据集介绍; 第2篇是“推荐系统涉及的算法介绍、冷启动和效果评估”,包括数据挖掘——让推荐系统更懂你、基于用户行为特征的推荐、基于标签的推荐、基于上下文的推荐、基于点击率预估的推荐、推荐系统中的冷启动和推荐系统中的效果评估; 第3篇是“推荐系统实例”,包括搭建一个新闻推荐系统、搭建一个音乐推荐系统、搭建一个图书推荐系统和业界推荐系统架构介绍。 《推荐系统开发实战》中的实例开发几乎都是基于公开的数据集进行的,当然也涉及一些网络中获取的数据,其最终目的都是让读者能够更好地理解推荐算法,更直...(展开全部)
    推荐系统开发实战
    搜索《推荐系统开发实战》
    图书

    图计算与推荐系统 - 图书

    2023计算机·理论知识
    导演:刘宇
    这是一本全面讲解图计算、知识图谱及其在推荐系统领域应用的专著,为读者基于神经网络构建推荐系统提供了详细指导,是作者在相关领域10余年经验的总结。掌握本书内容,读者可开发出能处理多模态数据的推荐算法系统,提供更丰富和准确的推荐体验。 本书主要内容分为两篇。 第一篇 图数据以及图模型(第1-3章) 对图数据、图神经网络、知识图谱的基础知识进行了梳理,帮助读者掌握着3项技术的关键原理与算法,为后面的学习打下基础。 第二篇 推荐系统(第4-9章) 首先介绍了推荐系统的架构,包括逻辑架构、技术架构和数据建模,以及基于GNN的推荐系统架构;然后详细讲解了如何基于GNN构建推荐系统,以及基于图的推荐算法;再接着讲解了知识图谱在推荐系统中的应用以及相关的算法模型;最后,探讨了推荐系统领域当前的热点问题、研究方向以及工业级推荐系统领域的核心难题 本书注重实战,故理论知识简练且极具针对性,包含大量实战案例,图文并茂,易于阅读。
    图计算与推荐系统
    搜索《图计算与推荐系统》
    图书

    图计算与推荐系统 - 图书

    2023计算机·理论知识
    导演:刘宇
    这是一本全面讲解图计算、知识图谱及其在推荐系统领域应用的专著,为读者基于神经网络构建推荐系统提供了详细指导,是作者在相关领域10余年经验的总结。掌握本书内容,读者可开发出能处理多模态数据的推荐算法系统,提供更丰富和准确的推荐体验。 本书主要内容分为两篇。 第一篇 图数据以及图模型(第1-3章) 对图数据、图神经网络、知识图谱的基础知识进行了梳理,帮助读者掌握着3项技术的关键原理与算法,为后面的学习打下基础。 第二篇 推荐系统(第4-9章) 首先介绍了推荐系统的架构,包括逻辑架构、技术架构和数据建模,以及基于GNN的推荐系统架构;然后详细讲解了如何基于GNN构建推荐系统,以及基于图的推荐算法;再接着讲解了知识图谱在推荐系统中的应用以及相关的算法模型;最后,探讨了推荐系统领域当前的热点问题、研究方向以及工业级推荐系统领域的核心难题 本书注重实战,故理论知识简练且极具针对性,包含大量实战案例,图文并茂,易于阅读。
    图计算与推荐系统
    搜索《图计算与推荐系统》
    图书

    推荐系统:产品与算法解析 - 图书

    2024计算机·理论知识
    导演:王超
    本书以媒介变迁为整体脉络,通过几类推荐产品的发展趋势来探讨推荐产品创新的核心驱动力,以及由具体产品特性引发的技术变革。 全书内容分为5部分。第一部分从宏观视角探讨推荐产品从0到1进行创新的产品思路和技术思路;第二部分介绍革新传统纸质媒介的新闻推荐和资讯推荐,包括关键算法设计和产品设计;第三部分介绍构建线上社交网络的社交和社区推荐,以及如何通过协同过滤算法模拟社交网络;第四部分从产品、生态和算法设计的角度,介绍革新传统影视行业的视频推荐;第五部分以阿里推荐产品及其新兴的竞争产品为例,介绍革新传统货架电商的商品推荐。
    推荐系统:产品与算法解析
    搜索《推荐系统:产品与算法解析》
    图书
    加载中...