悟空视频

    在线播放云盘网盘BT下载影视图书

    辛几何引论 - 图书

    1999
    导演:J·柯歇尔 邹异明
    辛几何是近十几年发展起来的新的重要数学分支.本书是辛几何(李流形)的入门性读物.全书共分六章,分别是:代数基础,辛流形,余切丛,辛G一空间,Poisson流形,一个分级情形.前三章是重要的基本概念,后三章论述有关的应用. 本书可供大学高年级学生、研究生以及几何、群论、分析、特别是微分方程方面的研究工作者参考.
    辛几何引论
    图书

    辛几何与泊松几何引论 - 图书

    2001
    导演:贺龙光
    辛几何与泊松几何引论
    搜索《辛几何与泊松几何引论》
    图书

    黎曼几何引论 - 图书

    导演:陈维桓
    《黎曼几何引论》分上、下两册出版,本书为下册,可以作为“黎曼几何”课程的后续课“黎曼几何II”的教材。当前,微分几何与数学的各个分支的相互影响越来越深刻、关系越来越密切。本书较好地反映了这种紧密的联系,其内容共有三章,包括Kahler流形、黎曼对称空间及主纤维丛上的联络。每章末都附有大量的习题,书末并附有习题解答和提示,便于读者深入学习和自学。 本书的选材和叙述都有它独到之处,与现有的数学文献相比颇具特色,可作为综合大学、师范院校数学系、物理系等相关专业研究生课程或研究生读者讨论班的教材或参考书,也可供从事微分几何、调和分析,以及数学物理等专门方向的研究人员参考。
    黎曼几何引论
    搜索《黎曼几何引论》
    图书

    微分几何引论 - 图书

    2013
    导演:陈维桓
    本书是现代微分几何的入门教材。自从20世纪50年代以来,以“内蕴”和“大范围”为特点的现代微分几何为现代数学的研究提供了必不可少的语言、思想和方法。通常认为,关于微分流形的基础理论和联络、黎曼度量等几何结构的课程是数学研究生必修的基础课,对于数学研究生学习和理解现代数学有重要意义。课程的主要内容有:张量和外形式、微分流形、切向量场、光滑张量场和外微分式、李群的初步知识、联络。 本书的前身是陈省身和陈维桓合著的《微分几何讲义》,以及陈维桓编著的《微分流形初步》。作者在北京大学和首都师范大学长期开设有关课程,积累了丰富的教学经验。特别是本书以作者在首都师范大学的教学为基础,在内容取材、概念讲解、例题演示、习题选配方面下了很多工夫,使得全书的内容更加精简,系统更加合理,并且更加适应于微分几何知识在更大范围内的普及。本书从微分流形的基本概念着手,强调每一种数...(展开全部)
    微分几何引论
    搜索《微分几何引论》
    图书

    黎曼几何引论 - 图书

    导演:陈维桓
    《黎曼几何引论(上)》可供综合大学、师范院校数学系、物理系学生和研究生作用教材,并且可供数学工作者参与。“黎曼几何引论”课是基础数学专业研究生的基础课。从1954年黎曼首次提出黎曼几何的概念以来,黎曼几何学经历了从局部理论到大范围理论的发展过程。现在,黎曼几何学已经成为广泛地用于数学、物理的各个分支学科的基本理论。《黎曼几何引论(上)》上册是“黎曼几何引论”课的教材,前四章是黎曼几何的基础;第五与第六章介绍黎曼几何的变分方法,是大范围黎曼几何学的初步;第七章介绍黎曼几何子流形的理论。每章末都附有大量的习题,书末并附有习题答案和提示,便于读者深入学习和自学。
    黎曼几何引论
    搜索《黎曼几何引论》
    图书

    黎曼几何引论 - 图书

    导演:陈维桓
    《黎曼几何引论》分上、下两册出版,本书为下册,可以作为“黎曼几何”课程的后续课“黎曼几何II”的教材。当前,微分几何与数学的各个分支的相互影响越来越深刻、关系越来越密切。本书较好地反映了这种紧密的联系,其内容共有三章,包括Kahler流形、黎曼对称空间及主纤维丛上的联络。每章末都附有大量的习题,书末并附有习题解答和提示,便于读者深入学习和自学。 本书的选材和叙述都有它独到之处,与现有的数学文献相比颇具特色,可作为综合大学、师范院校数学系、物理系等相关专业研究生课程或研究生读者讨论班的教材或参考书,也可供从事微分几何、调和分析,以及数学物理等专门方向的研究人员参考。
    黎曼几何引论
    搜索《黎曼几何引论》
    图书

    微分几何引论 - 图书

    2013
    导演:陈维桓
    本书是现代微分几何的入门教材。自从20世纪50年代以来,以“内蕴”和“大范围”为特点的现代微分几何为现代数学的研究提供了必不可少的语言、思想和方法。通常认为,关于微分流形的基础理论和联络、黎曼度量等几何结构的课程是数学研究生必修的基础课,对于数学研究生学习和理解现代数学有重要意义。课程的主要内容有:张量和外形式、微分流形、切向量场、光滑张量场和外微分式、李群的初步知识、联络。 本书的前身是陈省身和陈维桓合著的《微分几何讲义》,以及陈维桓编著的《微分流形初步》。作者在北京大学和首都师范大学长期开设有关课程,积累了丰富的教学经验。特别是本书以作者在首都师范大学的教学为基础,在内容取材、概念讲解、例题演示、习题选配方面下了很多工夫,使得全书的内容更加精简,系统更加合理,并且更加适应于微分几何知识在更大范围内的普及。本书从微分流形的基本概念着手,强调每一种数...(展开全部)
    微分几何引论
    搜索《微分几何引论》
    图书

    黎曼几何引论 - 图书

    导演:陈维桓
    《黎曼几何引论(上)》可供综合大学、师范院校数学系、物理系学生和研究生作用教材,并且可供数学工作者参与。“黎曼几何引论”课是基础数学专业研究生的基础课。从1954年黎曼首次提出黎曼几何的概念以来,黎曼几何学经历了从局部理论到大范围理论的发展过程。现在,黎曼几何学已经成为广泛地用于数学、物理的各个分支学科的基本理论。《黎曼几何引论(上)》上册是“黎曼几何引论”课的教材,前四章是黎曼几何的基础;第五与第六章介绍黎曼几何的变分方法,是大范围黎曼几何学的初步;第七章介绍黎曼几何子流形的理论。每章末都附有大量的习题,书末并附有习题答案和提示,便于读者深入学习和自学。
    黎曼几何引论
    搜索《黎曼几何引论》
    图书

    辛几何讲义: Lectures on Symplectic Geometry - 图书

    2012
    导演:Shlomo Sternberg
    《辛几何讲义》是美国著名数学家Shlomo Sternberg于2010年在清华大学教授辛几何的讲义,分为两个部分。第一部分(第1章~第10章)介绍了辛群、辛范畴、辛流形和Kostant—Souriau定理等内容;第二部分(第11章~第16章)分别讨论了Marle常秩嵌入定理、环面作用的凸性定理、Hamiltonian线性化定理和极小偶对。
    辛几何讲义: Lectures on Symplectic Geometry
    搜索《辛几何讲义: Lectures on Symplectic Geometry》
    图书

    辛几何讲义: Lectures on Symplectic Geometry - 图书

    2012
    导演:Shlomo Sternberg
    《辛几何讲义》是美国著名数学家Shlomo Sternberg于2010年在清华大学教授辛几何的讲义,分为两个部分。第一部分(第1章~第10章)介绍了辛群、辛范畴、辛流形和Kostant—Souriau定理等内容;第二部分(第11章~第16章)分别讨论了Marle常秩嵌入定理、环面作用的凸性定理、Hamiltonian线性化定理和极小偶对。
    辛几何讲义: Lectures on Symplectic Geometry
    搜索《辛几何讲义: Lectures on Symplectic Geometry》
    图书
    加载中...