悟空视频

    在线播放云盘网盘BT下载影视图书

    因果推理:基础与学习算法 - 图书

    导演:乔纳斯·彼得斯
    《因果推理:基础与学习算法》从概率统计的角度入手,分析了因果推理的假设,揭示这些假设所暗示的因果推理和学习的目的。本书分别论述了两个变量和多变量情况下的因果模型、学习因果模型及其与机器学习的关系,讨论了因果推理隐藏变量有关的问题、时间系列的因果分析。    《因果推理:基础与学习算法》可作为高等院校人工智能和计算机科学等相关专业高年级本科生和硕士研究生的教材,也可供研究机器学习、因果推理的技术人员参考。
    因果推理:基础与学习算法
    图书

    因果推理:基础与学习算法 - 图书

    导演:乔纳斯·彼得斯
    《因果推理:基础与学习算法》从概率统计的角度入手,分析了因果推理的假设,揭示这些假设所暗示的因果推理和学习的目的。本书分别论述了两个变量和多变量情况下的因果模型、学习因果模型及其与机器学习的关系,讨论了因果推理隐藏变量有关的问题、时间系列的因果分析。    《因果推理:基础与学习算法》可作为高等院校人工智能和计算机科学等相关专业高年级本科生和硕士研究生的教材,也可供研究机器学习、因果推理的技术人员参考。
    因果推理:基础与学习算法
    图书

    统计因果推理入门 - 图书

    导演:Judea Pearl
    因果性是理解和应用数据的核心,如果无法从数据中获知因果关系,则甚至无法回答诸如“治疗方案对患者有益还是有害”这类基本问题。虽然现在有很多关于数据分析统计方法的教科书,但到目前为止还没有适合初学者水平的书,介绍如何从数据中快速梳理因果信息的各种方法。 本书弥补了这种缺憾。书中使用简单的实例与朴实的语言介绍了如何定义因果关系,在各种情形下估计因果参数所必需的假设,如何数学化地表示这些假设,这些假设是否有可检测的蕴涵,如何预测干预的效应,以及如何进行反事实推理等。这些都是有兴趣用统计方法回答因果问题的读者需要掌握的基本工具。 本书适用于对解释数据感兴趣的任何读者,该书的实例来自不同领域,涵盖医学、公共政策以及法律等。
    统计因果推理入门
    搜索《统计因果推理入门》
    图书

    统计因果推理入门 - 图书

    导演:Judea Pearl
    因果性是理解和应用数据的核心,如果无法从数据中获知因果关系,则甚至无法回答诸如“治疗方案对患者有益还是有害”这类基本问题。虽然现在有很多关于数据分析统计方法的教科书,但到目前为止还没有适合初学者水平的书,介绍如何从数据中快速梳理因果信息的各种方法。 本书弥补了这种缺憾。书中使用简单的实例与朴实的语言介绍了如何定义因果关系,在各种情形下估计因果参数所必需的假设,如何数学化地表示这些假设,这些假设是否有可检测的蕴涵,如何预测干预的效应,以及如何进行反事实推理等。这些都是有兴趣用统计方法回答因果问题的读者需要掌握的基本工具。 本书适用于对解释数据感兴趣的任何读者,该书的实例来自不同领域,涵盖医学、公共政策以及法律等。
    统计因果推理入门
    搜索《统计因果推理入门》
    图书

    集成学习: 基础与算法 - 图书

    导演:周志华
    本书是目前国内独本系统性阐述集成学习的著作。 集成学习的思路是通过结合多个学习器来解决问题,它在实践中大获成功——人称“从业者应学应会的大杀器”之一。 化繁为简:将复杂的原理简化为易于理解的表达,通俗易懂; 结构合理:兼具广度与深度。既阐述该领域的重要话题,又详释了重要算法的实现并辅以伪代码,更易上手; 注重实践:阐述集成学习在多个领域的应用,如计算机视觉、医疗、信息安全和数据挖掘竞赛等; 拓展阅读:提供丰富的参考资料,读者可按图索骥、自行深入学习; 新手通过本书很容易理解并掌握集成学习的思路与精粹; 老手通过本书能学会不少技巧并深化对集成学习的理论理解,更好地指导研究和实践。 集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。 《集成学习:基础与算法》分为三部分。第一部分主要介绍集成学...(展开全部)
    集成学习: 基础与算法
    搜索《集成学习: 基础与算法》
    图书

    集成学习: 基础与算法 - 图书

    导演:周志华
    本书是目前国内独本系统性阐述集成学习的著作。 集成学习的思路是通过结合多个学习器来解决问题,它在实践中大获成功——人称“从业者应学应会的大杀器”之一。 化繁为简:将复杂的原理简化为易于理解的表达,通俗易懂; 结构合理:兼具广度与深度。既阐述该领域的重要话题,又详释了重要算法的实现并辅以伪代码,更易上手; 注重实践:阐述集成学习在多个领域的应用,如计算机视觉、医疗、信息安全和数据挖掘竞赛等; 拓展阅读:提供丰富的参考资料,读者可按图索骥、自行深入学习; 新手通过本书很容易理解并掌握集成学习的思路与精粹; 老手通过本书能学会不少技巧并深化对集成学习的理论理解,更好地指导研究和实践。 集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。 《集成学习:基础与算法》分为三部分。第一部分主要介绍集成学...(展开全部)
    集成学习: 基础与算法
    搜索《集成学习: 基础与算法》
    图书

    信息论、推理与学习算法 - 图书

    导演:David J.C. MacKay
    本书是英国剑桥大学卡文迪许实验室的著名学者David J.C.MacKay博士总结多年教学经验和科研成果,于2003年推出的一部力作。本书作者不仅透彻地论述了传统信息论的内容和最新编码算法,而且以高度的学科驾驭能力,匠心独具地在一个统一框架下讨论了贝叶斯数据建模、蒙特卡罗方法、聚类算法、神经网络等属于机器学习和推理领域的主题,从而很好地将诸多学科的技术内涵融会贯通。本书注重理论与实际的结合,内容组织科学严谨,反映了多门学科的内在联系和发展趋势。同时,本书还包含了丰富的例题和近400道习题(其中许多习题还配有详细的解答),便于教学或自学,适合作为信息科学与技术相关专业高年级本科生和研究生教材,对相关专业技术人员也不失为一本有益的参考书。...
    信息论、推理与学习算法
    搜索《信息论、推理与学习算法》
    图书

    信息论、推理与学习算法 - 图书

    导演:David J.C. MacKay
    本书是英国剑桥大学卡文迪许实验室的著名学者David J.C.MacKay博士总结多年教学经验和科研成果,于2003年推出的一部力作。本书作者不仅透彻地论述了传统信息论的内容和最新编码算法,而且以高度的学科驾驭能力,匠心独具地在一个统一框架下讨论了贝叶斯数据建模、蒙特卡罗方法、聚类算法、神经网络等属于机器学习和推理领域的主题,从而很好地将诸多学科的技术内涵融会贯通。本书注重理论与实际的结合,内容组织科学严谨,反映了多门学科的内在联系和发展趋势。同时,本书还包含了丰富的例题和近400道习题(其中许多习题还配有详细的解答),便于教学或自学,适合作为信息科学与技术相关专业高年级本科生和研究生教材,对相关专业技术人员也不失为一本有益的参考书。...
    信息论、推理与学习算法
    搜索《信息论、推理与学习算法》
    图书

    机器学习与深度学习算法基础 - 图书

    导演:贾壮
    本书共分为上下两篇,共18章:其中第一篇为经典机器学习模型部分,主要讲解了常用的机器学习经典模型。第1章讲解线性回归和lasso回归,岭回归。第2章介绍SVM模型。第3章介绍逻辑斯蒂回归。第4章介绍决策树模型。第5章介绍k近邻算法。第6章介绍朴素贝叶斯模型。第7章介绍线性判别分析与主成分分析。第8章介绍流形学习。第9章介绍聚类算法。第10章介绍稀疏编码。第11章介绍T-SVM模型。第12章介绍集成算法与提升算法。第二篇为深度学习和神经网络部分,主要介绍了时下蕞流形和通用的一些模型。第13章介绍了感知机模型,并简述了深度学习和神经网络的相关脉络。第14章介绍了深度学习网络的相关组成部分。第15章介绍了CNN的基本原理。第16章介绍了RNN的基本原理。第17章介绍了GAN的基本原理。最后,在第18章对本书进行了总结。
    机器学习与深度学习算法基础
    搜索《机器学习与深度学习算法基础》
    图书

    联邦学习:原理与算法 - 图书

    2021教育学习·教材
    导演:王健宗 李泽远 何安珣 王伟
    数据孤岛问题已经成为制约人工智能发展的主要阻碍。在此背景下,联邦学习(Federated Learning)作为一种新兴的机器学习技术范式,凭借其突出的隐私保护能力,展示出在诸多业务场景中的应用价值。本书从联邦学习的基础知识出发,深入浅出地介绍了中央服务器优化和联邦机器学习的算法体系,详细阐述了联邦学习中涉及的加密通信模块的相关知识,以定性和定量的双视角建立了联邦学习服务质量的评估维度、理论体系,还延伸介绍了提升联邦学习服务质量的方法,并对联邦学习的研究趋势进行了深入探讨与分析,可以对设计和选择算法提供工具式的参考和帮助。本书是高校、科研院所和业界相关学者研究联邦学习技术的理想读本,也适合大数据、人工智能行业的从业者和感兴趣的读者参考。
    联邦学习:原理与算法
    搜索《联邦学习:原理与算法》
    图书
    加载中...