悟空视频

    在线播放云盘网盘BT下载影视图书

    统计学习理论 - 图书

    导演:Vladimir N. Vapnik
    统计学习理论是研究利用经验数据进行机器学习的一种一般理论,属于计算机科学、模式识别和应用统计学相交叉与结合的范畴,其主要创立者是本书作者。统计学习理论基本内容诞生于20世纪60~70年代,到90年代中期发展到比较成熟并受到世界机器学习界的广泛重视,其核心内容反映在Vapnik的两部重要著作中,本书即是其中一部,另一部是《统计学习理论的本质》。 由于较系统地考虑了有限样本的情况,统计学习理论与传统统计学理论相比有更好的实用性,在该理论下发展出的支持向量机方法以其有限样本下良好的推广能力而备受重视。
    统计学习理论
    图书

    统计学习理论 - 图书

    导演:Vladimir N.vapnik
    统计学习理论
    图书

    统计学习理论 - 图书

    导演:Vladimir N. Vapnik
    统计学习理论是研究利用经验数据进行机器学习的一种一般理论,属于计算机科学、模式识别和应用统计学相交叉与结合的范畴,其主要创立者是本书作者。统计学习理论基本内容诞生于20世纪60~70年代,到90年代中期发展到比较成熟并受到世界机器学习界的广泛重视,其核心内容反映在Vapnik的两部重要著作中,本书即是其中一部,另一部是《统计学习理论的本质》。 由于较系统地考虑了有限样本的情况,统计学习理论与传统统计学理论相比有更好的实用性,在该理论下发展出的支持向量机方法以其有限样本下良好的推广能力而备受重视。
    统计学习理论
    图书

    统计学习理论 - 图书

    导演:Vladimir N.vapnik
    统计学习理论
    图书

    统计学习理论与方法:R语言版 - 图书

    2020科学技术·工业技术
    导演:左飞
    本书从统计学观点出发,以数理统计为基础,全面系统地介绍了统计机器学习的主要方法。内容涉及回归(线性回归、多项式回归、非线性回归、岭回归,以及LASSO等)、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类(K均值、EM算法、密度聚类等)、蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、吉布斯采样和马尔科夫链蒙特卡洛等)、降维与流形学习(SVD、PCA和MDS等),以及概率图模型基础等话题。此外,为方便读者自学,本书还扼要地介绍了机器学习中所必备的数学知识(包括概率论与数理统计、凸优化及泛函分析基础等)。
    统计学习理论与方法:R语言版
    搜索《统计学习理论与方法:R语言版》
    图书

    统计学习理论基础 - 图书

    导演:桑吉夫.库尔卡尼
    全书共包含18个章节,从概率密度、贝叶斯决策理论引入样本学习的基本概念,进而介绍了近邻域学习、核学习及神经网络学习,在此基础上探讨了PCA学习、VC维概念、函数估计问题等,后重点介绍了非常实用的支持向量机SVM及Boosting方法。各章均包含小结、附录、习题及参考资料,非常适合于大专院校计算机及电气工程类硕博士研究生及高年级学生作为教学参考书。
    统计学习理论基础
    搜索《统计学习理论基础》
    图书

    统计学: 统计学 - 图书

    导演:贾俊平
    本书结合作者多年的教学实践经验和国外优秀统计学教材的成果编写而成。内容包括描述统计方法、推断统计方法以及工商管理中常用的一些统计方法。在写法上与计算机紧密结合,大部分统计方法都给出了Excel的计算过程和结果,并在书后配有教学和学习辅助光盘,方便教师授课和学生自学。 本书可作为高等院校经济、管理类各专业本科生统计学课程的教材,也可作为MBA的教材或参考书,对广大实际工作者也极具参考价值。
    统计学: 统计学
    搜索《统计学: 统计学》
    图书

    统计学习要素 - 图书

    2020
    导演:Trevor Hastie
    三位统计学家高屋建瓴,面向非统计专业的读者介绍重要的统计学概念,而非纯数学理论 借助于一个通用概念框架,描述多个学科的重要思想,比如医学、生物学、金融学和营销 《统计学习要素》(第2版)包含人工智能中用到的许多代表性主题,比如图模型、随机森林、集成方法、Lasso最小角度回归和路径算法、非负矩阵分解和频谱聚类。此外,还用一章篇幅来介绍“宽”数据(p大于n)的方法,包括多次测试和误检率。 对统计领域、人工智能领域及相关科学或行业领域内的读者而言,本书是一个难得的宝库,涉及面很广,从监督学习(预测)到无监督学习,具体主题包括神经网络、支持向量机、分类树和Boosting(率先对该主题进行综合论述)。与此同时,书中还包含丰富的示例和大量彩色的图表。
    统计学习要素
    搜索《统计学习要素》
    图书

    统计学习基础: - 图书

    导演:哈斯蒂
    计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。《统计学习基础(第2版)(英文)》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础(第2版)(英文)》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。 《统计学习基础(第2版)(英文)》可作为高等院校相关专业本科生和研究生的教材,对于统计学相关人员、科学界和业界关注数据挖掘的人,《统计学习基础(第2版)(英文)》值得一读。
    统计学习基础:
    搜索《统计学习基础:》
    图书

    统计学习基础: - 图书

    导演:哈斯蒂
    计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。《统计学习基础(第2版)(英文)》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础(第2版)(英文)》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。 《统计学习基础(第2版)(英文)》可作为高等院校相关专业本科生和研究生的教材,对于统计学相关人员、科学界和业界关注数据挖掘的人,《统计学习基础(第2版)(英文)》值得一读。
    统计学习基础:
    搜索《统计学习基础:》
    图书
    加载中...